Article | REF: AF567 V1

The spectral theory and its applications. Generalities and compact operators

Author: Marc LENOIR

Publication date: April 10, 2010

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Français

ABSTRACT

In order to solve the problems in which linear operators appear, they must be simplified. In order to achieve this, the principle of the spectral theory is used, as it allows for obtaining reduced forms by decomposing the linear operators into a collection of elementary operators. In the finite dimension (in the case of matrices), this consists in decomposing the operator into the sum of multiplication operators and one nilpotent operator (reduced forms analogous to the Jordan canonical forms). In the case of infinite dimensional spaces, the spectral theory is also used in order to analyze equations, be they integral or partial differential equations.

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHOR

  • Marc LENOIR: CNRS Research Director, École nationale supérieure des techniques avancées

 INTRODUCTION

The aim of spectral theory is to elucidate the structure of linear operators so that they can be decomposed into a collection of elementary operators, thus simplifying the solution of the problems in which they are involved. In the case of matrices, or in other words in finite dimensions, algebraic methods involving polynomials can be used to arrive at Jordan's form, which translates the decomposition of the operator into the sum of multiplication operators and a nilpotent operator. The ideal case is that of symmetric or self-adjoint matrices, in which the nilpotent operator is necessarily zero, giving the matrix a diagonal structure in an eigenvector basis. An abundant and complex literature deals with the numerical aspects of spectral decomposition of large matrices, and bears witness to the fact that simple and well-known theoretical results are not necessarily easy to implement in practice (cf. the article calculating eigenvalues in the same collection).

A decisive step was taken when spectral theory was applied to the study of equations, whether integral or partial differential, in infinite-dimensional spaces. The first results, relating to the study of integral equations, were obtained by Fredholm and then Hilbert, and generalized by F. Riesz into a theory of compact operators. These results depend on tools derived from functional analysis, but are close in many respects to those of finite dimension, unlike Stone's generalization to non-compact self-adjoint operators, in which measure theory plays an essential role. An important part of the subsequent developments, relating to unbounded operators and operator algebras, results from von Neumann's work and was initiated under the impetus of quantum mechanics.

In this article, we only present a general presentation of bounded operators and some aspects of the spectral theory of compact operators.

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

This article is included in

Mathematics

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Spectral theory and applications