Présentation

Article

1 - PROBLÉMATIQUE DU RENDU SONORE

2 - PIPELINE DE RENDU SONORE

3 - SYNTHÈSE DE SOURCES SONORES VIRTUELLES

4 - MODÉLISATION DE LA PROPAGATION DU SON

5 - RENDU AUDIO STRUCTURÉ ET OPTIMISATIONS PERCEPTIVES

6 - RENDU AUDIO 3D PAR MANIPULATION DIRECTE D'ENREGISTREMENTS IN-SITU

  • 6.1 - Rendu à partir d'enregistrements coïncidents et décompositions directionnelles
  • 6.2 - Rendu à partir d'enregistrements non coïncidents
  • 6.3 - Extraction d'une scène structurée à partir d'enregistrements

Article de référence | Réf : TE5914 v1

Rendu audio structuré et optimisations perceptives
Modèles pour le rendu sonore

Auteur(s) : Nicolas TSINGOS, Olivier WARUSFEL

Date de publication : 10 févr. 2008

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Nicolas TSINGOS : Chargé de recherche, INRIA (Institut national de recherche en informatique et en automatique) - Équipe REVES (rendu et environnements virtuels sonorisés)

  • Olivier WARUSFEL : Chargé de recherche, IRCAM (Institut de recherche et coordination acoustique / musique)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Si la visualisation 3D bénéficie d'un développement privilégié pour les applications de réalité virtuelle, le son en est un autre composant incontournable. Les techniques de spatialisation du son permettent aujourd'hui de simuler des sources sonores virtuelles placées arbitrairement dans l'espace autour de l'auditeur. Sur casque ou enceintes, elles permettent une immersion décuplée dans les environnements de synthèse tout en restant naturelles et peu intrusives pour l'utilisateur. Ce dossier propose un tour d'horizon des différentes techniques pouvant être mises en œuvre pour apporter une dimension sonore immersive à un environnement virtuel interactif.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-te5914


Cet article fait partie de l’offre

Le traitement du signal et ses applications

(160 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

5. Rendu audio structuré et optimisations perceptives

Comme nous l'avons vu dans le paragraphe précédent, le rendu d'une source sonore 3D implique un nombre important d'opérations de traitement du signal. Même dans le cas de modèles simplifiés, effectuer l'ensemble de ces traitements pour un grand nombre de sources sonores reste trop coûteux en temps de calcul pour la plupart des applications. De plus, les solutions de rendu hardware [134] (cf. Restitution sonore spatiale- Dispositifs et interfaces[TE 5 912]) ne supportent qu'un nombre limité de sources sonores simultanées, aussi appelées « voies » (de 16 à 64 pour les cartes actuelles, 128 pour la prochaine génération). Il est pourtant clair qu'un grand nombre de sources sonores peut être nécessaire au rendu d'un environnement réaliste. D'une part, on veut pouvoir représenter des sources sonores étendues (un train par exemple) ou complexes, ce qui nécessite l'utilisation de plusieurs sources. D'autre part, le rendu de chemins de propagation précoces nécessite également le rendu de nombreuses sources secondaires. Enfin, dans certaines applications, comme le jeu vidéo, une musique d'ambiance peut être également rendue sous forme spatialisée en utilisant un ensemble de sources sonores 3D spécifique. Une problématique qui apparaît très vite est alors de pouvoir rendre efficacement un grand nombre de sources que ce soit de manière logicielle ou en effectuant dynamiquement un mapping sur un nombre de canaux matériels limité (voice management). Dans ce paragraphe, nous présentons différentes stratégies permettant de structurer une scène sonore et de la représenter à différents niveaux de résolution afin de pouvoir maîtriser dynamiquement la complexité du rendu. La structuration d'une scène sonore et la perception de sources sonores multiples ont fait l'objet de nombreuses recherches tant dans le domaine de la psycho-acoustique que dans celui de l'analyse de scènes sonores [16] [17] [13]. Comme nous le verrons, une particularité de ces approches est de s'adapter au contenu des signaux devant être spatialisés ainsi qu'aux propriétés de l'auditeur humain. En pratique, maîtriser...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Le traitement du signal et ses applications

(160 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Rendu audio structuré et optimisations perceptives
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - AJDLER (T.), VETTERLI (M.) -   The plenacoustic function and its sampling  -  . Proc. of the 1st Benelux Workshop on Model-based processing and coding of audio (MPCA2002), Leuven, Belgium (2002).

  • (2) - ALIAGA (D.G.), CARLBOM (I.) -   Plenoptic stitching: a scalable method for reconstructing 3d interactive walk throughs  -  . In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 443-450, New York, NY, USA. ACM Press (2001).

  • (3) - ALLEN (J.), BERKLEY (D.) -   Image method for efficiently simulating small room acoustics  -  . J. of the Acoustical Society of America, 65(4) (1979).

  • (4) - ALLMAN-WARD (M.), BALAAM (M.), WILLIAMS (R.) -   Source decomposition for vehicle sound simulation  -  . Available from http://www.mts.com/nvd/pdf/source_decomp4veh_soundsim.pdf (2005).

  • (5) - ALRUTZ (H.), SCHROEDER (M.) -   A fast hadamard transform method for evaluation of measurements using pseudorandoom test signals  -  . Volume 6, pages 235-238 (1983).

  • ...

1 Événements

HAUT DE PAGE

1.1 Conférences

SIGGRAPH http://www.siggraph.org

L'AES http://www.aes.org

ASA http://asa.aip.org

SFA http://www.sfa.asso.fr

HAUT DE PAGE

2 Outils

EAX Environmental audio extensions 4.0, Creativec_ http://www.soundblaster.com/eaudio Suite d'outils logiciels, intégrée à DirectSound de Microsoft et Open Al, qui gère des modèles de réverbération.

Soundblaster. Creative Labs Soundblasterc_ http://www.soundblaster.com Type de carte son supportant des effets de spatialisation du son et de réverbération.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Le traitement du signal et ses applications

(160 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS