Présentation

Article

1 - NOTION DE SYSTÈME DE CALCUL FORMEL

  • 1.1 - Raisons du développement du calcul formel
  • 1.2 - Possibilités et critères d’évaluation

2 - EXEMPLES DE CALCULS

  • 2.1 - Calcul en précision arbitraire
  • 2.2 - Calcul matriciel
  • 2.3 - Intégration
  • 2.4 - Équations algébriques
  • 2.5 - Séries
  • 2.6 - Génération automatique de programmes

3 - SYSTÈMES DE CALCUL FORMEL À LARGE SPECTRE

  • 3.1 - Macsyma
  • 3.2 - Reduce
  • 3.3 - Maple
  • 3.4 - Mathematica
  • 3.5 - Axiom

4 - CALCUL FORMEL ET APPLICATIONS

  • 4.1 - Problèmes de développement de logiciel
  • 4.2 - Domaines d’application
  • 4.3 - Un domaine des mathématiques appliquées en pleine expansion
  • 4.4 - Conclusion

Article de référence | Réf : H3308 v1

Exemples de calculs
Systèmes de calcul formel

Auteur(s) : Didier PINCHON

Date de publication : 10 déc. 1996

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Didier PINCHON : Ancien élève de l’École normale supérieure de Saint‐Cloud - Docteur ès‐sciences - Chercheur au Laboratoire « Mathématiques pour l’industrie et la physique »,Université Paul Sabatier , Toulouse

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

L e calcul scientifique sur ordinateur se présente principalement sous deux aspects différents et complémentaires.

D’une part, le calcul numérique traditionnel où est exploitée la capacité des ordinateurs à effectuer rapidement un grand nombre d’opérations arithmétiques sur les nombres réels. Les résultats de ce type de calcul sont approchés et ils dépendent du choix de la représentation des nombres réels et de la façon dont sont effectuées les opérations arithmétiques. L’accumulation des erreurs d’arrondis, les problèmes de mauvais conditionnement sont pour les calculs numériques des obstacles fréquents à l’obtention de résultats reproductibles et fiables.

D’autre part, le calcul symbolique ou calcul formel consiste à faire effectuer par l’ordinateur des calculs mathématiques exacts : développements, transformations, simplifications de formules. Un aspect typique du calcul formel est que les symboles dans les formules ne sont pas nécessairement remplacés par des valeurs numériques particulières mais conservés lors du déroulement des calculs. Tous les calculs présentant un caractère d’automatisme, c’est‐à‐dire dont les étapes obéissent à un ensemble bien précis et cohérent de règles, peuvent être effectués par ordinateur. Des formules courantes de l’art de l’ingénieur, le calcul différentiel et intégral, par exemple, sont ainsi traitées par des programmes informatiques avec une fiabilité bien supérieure à celle d’un calcul manuel et avec des limites pour la taille des calculs incomparablement plus grandes.

Le calcul formel est un domaine de recherche en pleine expansion. Dans tous les secteurs où les mathématiciens obtiennent des résultats constructifs, de nouveaux algorithmes spécifiques sont mis au point, transformés en programmes et expérimentés.

Un système de calcul formel est un logiciel regroupant des programmes de calcul symbolique relatifs à un domaine spécialisé ou bien au contraire des programmes assez généraux pour effectuer tous les calculs mathématiques usuels de l’ingénieur mathématicien. Un système de calcul formel se présente à l’utilisateur sous la forme d’un ensemble de commandes et d’un langage plus ou moins élaboré lui permettant d’organiser ses calculs et même quelquefois d’étendre le système lui‐même. Les systèmes de calcul formel les plus répandus contiennent également des programmes numériques et des utilitaires graphiques pour faciliter l’interprétation et l’exploitation des résultats.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-h3308


Cet article fait partie de l’offre

Technologies logicielles Architectures des systèmes

(240 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Exemples de calculs

Les calculs qui suivent ont été effectués à l’aide du système Axiom [2]. Ils peuvent très facilement être réalisés avec les autres systèmes. Un tout petit nombre d’explications est suffisant pour comprendre la syntaxe.

  • Tout objet dans Axiom a un nom, un type et une valeur. Le symbole : réalise l’attribution de type (le typage) et le symbole := l’attribution de valeur. Ainsi, après l’exécution de a : Integer := 5, a représente un entier de valeur 5.

  • Lorsqu’une évaluation est demandée, Axiom retourne la valeur du résultat et son type. Une commande d’environnement permet de demander la suppression de l’impression du type du résultat : c’est le cas dans ces exemples. Lorsqu’une demande d’évaluation se termine par ; , le résultat de cette évaluation n’est pas affiché à l’écran : il s’agit d’un calcul intermédiaire.

  • Si le type d’une évaluation n’est pas demandé par l’utilisateur, il est calculé par le système à l’aide d’un programme d’inférence de type.

  • Le symbole % représente le résultat (valeur et type) de l’évaluation précédente.

  • La signification des abréviations pour les types est donnée au fur et à mesure des exemples (RN est une abréviation pour Fraction (Integer), l’ensemble des nombres rationnels).

  • Enfin dans une ligne, tout texte précédé de -- est un commentaire.

2.1 Calcul en précision arbitraire

La taille des entiers n’est limitée que par l’espace mémoire disponible pour les objets présents dans le système et pour les calculs.

Les nombres de Fibonacci f n sont définis de la façon suivante : f 0 = 0, f 1 = 1 et de proche en proche (par récurrence) f n = f n –1 + f n –2 pour n2 . L’exemple 1 fournit le nombre f 400...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies logicielles Architectures des systèmes

(240 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Exemples de calculs
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PAVELLE (R.), ROTHSTEIN (M.), FITCH (J.) -   L’algèbre informatique, in  -  Le Calcul Intensif, Bibliothèque Pour la Science, Diffusion Éditions Belin, Paris 1989, pp. 71‐84.

  • (2) - JENKS (R.D.), SUTOR (R.S.) -   AXIOM : The Scientific Computation System.  -  Springer- Verlag, New York, 1992.

  • (3) - FAUGÈRE (J.C.) -   Résolution des systèmes d’équations algébriques.  -  Thèse Université Paris 6, Février 1994.

  • (4) -   Proceedings of the Macsyma User’s Conference,  -  Schenectady, New York, 1984.

  • (5) - HEARN (A.C.) -   Reduce 2 : A System and Language for Algebraic Manipulations, in  -  Proceedings of the Second Symposium for Symbolic and Algebraic Manipulation, ACM Press, New York, 1971.

  • (6) - BORST (W.N.), GOLDMAN (V.V.), Van HULZEN (J.A.) -   GENTRAN 90 : A Reduce...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies logicielles Architectures des systèmes

(240 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS