Présentation
EnglishAuteur(s)
-
Xavier JEANNEAU : Agrégé de mathématiques - Professeur en classes préparatoires aux grandes écoles d’ingénieurs,lycée Aristide-Briand d’Évreux
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les performances spectaculaires du calcul électronique ont depuis longtemps conduit les scientifiques à confier aux ordinateurs le calcul numérique ; il en a résulté un partage des tâches : tout en cédant aux machines le domaine des applications numériques, c’est-à-dire des approximations, l’homme, s’estimant seul capable de raisonner et de mener à bien un calcul algébrique, s’est réservé la maîtrise de l’exactitude. L’apparition des systèmes de calcul formel, capables d’effectuer des calculs algébriques bien au-delà des possibilités humaines, a remis en cause cette répartition rassurante.
L’introduction en 1995 de l’apprentissage d’un logiciel de calcul symbolique dans l’enseignement des classes préparatoires scientifiques a précipité en France cette évolution. Après hésitation entre les logiciels Mathematica et Maple, c’est ce dernier, moins cher et d’un premier abord plus facile, qui a été très majoritairement adopté.
Sans aucune connaissance préalable, cette découverte progressive du logiciel Maple n’est pas pour autant un simple mode d’emploi : au fil de cette exploration, nous avons voulu souligner les caractères généraux du calcul formel en soulevant quelques questions sur le logiciel :
-
sa fiabilité : peut-on démontrer un théorème à l’aide de Maple ? Quelle est en calcul formel la représentation d’une expression algébrique ? Comment le logiciel simule-t-il une activité mathématique ?
-
la manière de l’utiliser : doit-on préférer exécuter les instructions une à une, de manière interactive, ou rédiger des programmes ? Quel est le style de programmation qui s’adapte le mieux au calcul formel ? Quel type de données utiliser pour la géométrie, l’analyse ou l’algèbre linéaire ?
-
son impact : comment le calcul formel change-t-il notre manière de travailler ? Faut-il encore connaître des mathématiques ? Peut-on tout traiter avec Maple ?
Notre ambition étant de montrer que le calcul symbolique peut modifier de manière significative la pratique du travail scientifique, nous nous appuyons sur quelques exemples, peu nombreux mais approfondis. Ne faisant appel qu’aux connaissances mathématiques de première année d’enseignement supérieur, ils requièrent néanmoins une lecture attentive.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(240 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Vecteurs et matrices : calculer avec des tableaux
5.1 Les tables ou comment utiliser des indices
Il est courant en mathématiques d’utiliser des notations indexées et cela vaut aussi pour Maple où les crochets permettent de noter les indices. Ainsi au paragraphe 3.3 avions-nous :
> restart:
> P[C]:=k[A]^2/a^2+k[B]^2/ b^2+2*k[A]*k[B]*c/a/ b –(2–k[A]–k[B])^2 ;
À l’issue de cette instruction, nous disposons donc de trois noms indexés : P C , k A et k B . k A et k B sont des indéterminées mathématiques tandis que P C , ayant reçu une valeur, devient le nom d’une variable informatique. L’usage qui en a été fait 3.3...
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(240 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Vecteurs et matrices : calculer avec des tableaux
BIBLIOGRAPHIE
-
(1) - * - Pour le lecteur désireux d’étendre cette exploration, outre le mode d’emploi du logiciel , nous conseillons d’abord , très facile d’accès et couvrant l’essentiel des applications de niveau premier cycle universitaire. Si le lecteur est plus intéressé par l’approfondissement du calcul formel tel que nous l’avons esquissé, la meilleure référence est de loin . À l’inverse de notre approche, les exemples accompagnant ces deux ouvrages sont brefs et nombreux. Enfin, ceux qu’un peu plus de mathématiques n’effraie pas pourront consulter .
-
(2) - * - et sont deux références très classiques sur les mathématiques qui sous-tendent le calcul formel ; montre très bien quelles nouvelles recherches il suscite.
-
(3) - * - est la traduction d’un des guides fournis avec le logiciel, très utile si les indications données ici sur la programmation de Maple semblent trop sommaires.
-
(4) - * - De nombreux livres d’exercices sur Maple préparent aux concours d’accès aux grandes écoles d’ingénieurs. À ceux qu’intéresse la confrontation des logiciels Maple et Mathematica, je me permets de signaler . On y découvre qu’une fois maîtrisé l’un...
ANNEXES
Les exemples traités dans cet article ont été rédigés avec la version la plus répandue en 2001 : Maple V Release 5. Toutefois, depuis la Release 4 jusqu’à la toute dernière Release 7, aucune modification essentielle n’est intervenue sur le fonctionnement courant du logiciel et les instructions peuvent être adaptées sans changement important.
Fournisseur du logiciel : Waterloo Maple Inc.
Distributeur en France : Math Center
HAUT DE PAGECet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(240 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive