Présentation

Article

1 - D’UN ROUTAGE AU MIEUX À L’INGÉNIERIE DE TRAFIC

2 - INGÉNIERIE DE TRAFIC DISTRIBUÉE

3 - LE PCE POUR UNE INGÉNIERIE DE TRAFIC CENTRALISÉE

4 - BASES DU PROTOCOLE PCEP

5 - ACQUISITION TOPOLOGIQUE

6 - GESTION DU MULTI-DOMAINES OU MULTI-AIRES

7 - BESOIN D’UN PCE À GESTION D’ÉTAT

8 - GESTION DE LA REDONDANCE

9 - PCE DANS LES RÉSEAUX DE TRANSMISSION

  • 9.1 - GMPLS et PCE dans les réseaux de transmission
  • 9.2 - Dialogue IP – transmission : PCE multicouches ou multiples PCE

10 - EXEMPLE DE CONFIGURATION D’UN PCC

  • 10.1 - Configuration sur routeur Juniper
  • 10.2 - Configuration sur routeur Cisco IOS

11 - PILOTAGE DU TRAFIC

12 - APPROCHE SDN AVEC LE PCE

13 - PASSAGE À L’ÉCHELLE DE L’ARCHITECTURE PCE

14 - SÉCURITÉ DU PCE

  • 14.1 - Sécurité protocolaire
  • 14.2 - Sécurité vis-à-vis des PCC
  • 14.3 - Sécurité vis-à-vis des utilisateurs
  • 14.4 - Sécurité vis-à-vis des applications externes

15 - MISE EN ŒUVRE D’UN PCE

16 - PRODUITS DU MARCHÉ

  • 16.1 - Juniper Northstar
  • 16.2 - Nokia NSP
  • 16.3 - Cisco WAE
  • 16.4 - Cisco XTC
  • 16.5 - Opendaylight

17 - CONCLUSION

18 - GLOSSAIRE

Article de référence | Réf : TE7615 v1

D’un routage au mieux à l’ingénierie de trafic
Path Computation Element - Rendre le réseau IP WAN programmable

Auteur(s) : Stéphane LITKOWSKI

Date de publication : 10 nov. 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Historiquement basé sur un routage best-effort, les réseaux IPs ont dû évoluer pour supporter les contraintes de plus en plus importantes des applications. L’ingénierie de trafic distribuée est un outil fréquemment utilisé pour mettre en place un routage contraint. Cependant celle-ci ne permet pas de résoudre tous les problèmes d’optimisation. Une ingénierie de trafic centralisée utilisant un PCE (Path Computation Element) est alors nécessaire pour surmonter ces limitations et rendre le réseau programmable.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Path Computation Element – Bringing the WAN to the SDN era

Originally, IP networks provided best-effort routing. The emergence of critical applications carried over IP networks has led to the deployment of a distributed traffic engineering architecture to meet the constraints introduced by these applications. However, this architecture cannot solve all the network optimization cases, and so a centralized traffic engineering architecture based on a PCE becomes necessary to overcome these limitations and create a programmable network.

Auteur(s)

INTRODUCTION

La mouvance vers le tout IP entraîne un portage d’applications de plus en plus critiques sur les réseaux IP. Les contraintes de ces applications en termes de bande passante, latence, gigue, etc. peuvent nécessiter la mise en œuvre d’une politique de routage différenciée dans le réseau là où le réseau IP utilise par défaut une politique unique de « plus court » chemin. La mise en œuvre de technique d’ingénierie de trafic à base de MPLS (Multi Protocol Label Switching) est souvent nécessaire afin d’ouvrir la possibilité de calcul de chemins contraints.

L’ingénierie de trafic n’est pas un nouveau concept en soit et était déjà utilisée dans des réseaux comme les réseaux ATM (Asynchronous Transfer Mode). Elle est également déployée de manière plus ou moins large au sein de réseaux IP afin d’adresser ce besoin de différentiation de routage pour différents types de trafic.

Dans cet article, nous allons rappeler dans un premier temps les concepts de base de l’ingénierie de trafic dans un réseau IP/MPLS, pour nous attarder ensuite sur les limitations de l’approche distribuée qui est actuellement déployée. Dans un second temps, cet article introduit l’architecture d’ingénierie de trafic centralisée utilisant un PCE (Path Computation Element) permettant de pallier ces limitations. Le fonctionnement du protocole de communication utilisé par le PCE est détaillé, ainsi que la mise en œuvre d’une architecture de routage utilisant un PCE. Cet article présente également l’analyse de plusieurs cas d’usage du PCE.

Nous abordons enfin les aspects sécurité liés à l’introduction du PCE et nous terminons par une vue non exhaustive du marché actuel.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

SDN   |   traffic engineering   |   PCE   |   PCP   |   PCEP   |   CSPF

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-te7615


Cet article fait partie de l’offre

Réseaux Télécommunications

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

1. D’un routage au mieux à l’ingénierie de trafic

Le protocole IP (Internet Protocol) est utilisé dans la plupart des réseaux. Il assure un service de couche 3 au sein du modèle OSI et permet un acheminement des données depuis un hôte source vers un hôte destination. Le protocole IP est un protocole simple qui n’offre aucune garantie de service (réseau « Best Effort »). L’acheminement des données est fait au mieux des capacités de chaque nœud du réseau.

Dans un réseau IP, chaque nœud du réseau (appelé routeur) est responsable de l’aiguillage des données qu’il reçoit. Ainsi, le routage des données est effectué dans un mode distribué : chaque routeur participe à la construction du chemin des données grâce à sa table de routage (figure 1).

Un routeur IP utilise la notion de plus court chemin pour déterminer la meilleure route à utiliser. Ce plus court chemin est déterminé par la somme des métriques accumulées sur le chemin lors du calcul. Selon le protocole de routage utilisé et la volonté de l’administrateur du réseau, la métrique peut avoir une signification différente : nombre de sauts, bande passante, latence, etc. La figure 2 présente un exemple de métriques positionnées sur chaque lien du réseau permettant à chaque routeur de déterminer le plus court chemin.

L’augmentation des débits utilisés sur Internet et sur les réseaux IP en général a permis l’arrivée de nouvelles applications (voix, vidéo, etc.). Ces applications requièrent cependant des contraintes que les réseaux IPs « Best Effort » ne peuvent cependant pas assurer (latence maximale acceptable, bande passante réservée, etc.).

L’augmentation des débits pose également des questions sur le modèle économique des réseaux. En effet, la mise à disposition de bande passante supplémentaire représente un coût important pour les opérateurs qui n’est pas forcément reportable sur le prix des produits vendus. Des stratégies ciblées d’augmentation de bande passante doivent donc être mises en place, couplées avec de nouvelles politiques de routage.

L’ingénierie de trafic est un ensemble de techniques permettant de sélectionner des chemins spécifiques dont les caractéristiques répondent au contrat de service entre le client et l’opérateur ainsi que des...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux Télécommunications

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
D’un routage au mieux à l’ingénierie de trafic
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - IETF – PCEP -   Extension for Distribution of Link-State and TE Information.  -  https://datatracker.ietf.org/doc/draft-dhodylee-pce-pcep-ls/ (2018).

  • (2) - IETF – PCEP -   Extensions for GMPLS.  -  https://datatracker.ietf.org/doc/draft-ietf-pce-gmpls-pcep-extensions/ (2017).

  • (3) - IETF -   Path Computation Element communication Protocol extension for associating Policies and LSPs.  -  https://datatracker.ietf.org/doc/draft-ietf-pce-association-policy/ (2018).

  • (4) - IETF -   Path Computation Element communication Protocol extension for signaling LSP diversity constraint.  -  https://datatracker.ietf.org/doc/draft-ietf-pce-association-diversity/ (2018).

  • (5) - IETF – PCEP -   Extensions for Establishing Relationships Between Sets of LSPs.  -  https://datatracker.ietf.org/doc/draft-ietf-pce-association-group/ (2018).

NORMES

  • RSVP-TE : Extensions to RSVP for LSP Tunnels. - RFC 3209 - 2001

  • Traffic Engineering (TE) Extensions to OSPF Version 2. - RFC 3630 - 2003

  • The Transport Layer Security Protocol Version 1.2. - RFC 5246 - 2008

  • IS-IS Extensions for Traffic Engineering. - RFC 5305 - 2008

  • Traffic Engineering Extensions to OSPF Version 3. - RFC 5329 - 2008

  • Path Computation Element Communication Protocol. - RFC 5440 - 2009

  • A Backward-Recursive PCE-Based Computation Procedure to Compute Shortest Constrained Inter-Domain Traffic Engineering Label Switched Paths. - RFC 5441 - 2009

  • The Application of the Path Computation Element Architecture to the Determination of a Sequence of Domains in MPLS and GMPLS. - RFC 6805 - 2012

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux Télécommunications

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS