Présentation
EnglishRÉSUMÉ
Historiquement basé sur un routage best-effort, les réseaux IPs ont dû évoluer pour supporter les contraintes de plus en plus importantes des applications. L’ingénierie de trafic distribuée est un outil fréquemment utilisé pour mettre en place un routage contraint. Cependant celle-ci ne permet pas de résoudre tous les problèmes d’optimisation. Une ingénierie de trafic centralisée utilisant un PCE (Path Computation Element) est alors nécessaire pour surmonter ces limitations et rendre le réseau programmable.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Stéphane LITKOWSKI : Senior Network Architect and Orange Expert - Orange Business Services
INTRODUCTION
La mouvance vers le tout IP entraîne un portage d’applications de plus en plus critiques sur les réseaux IP. Les contraintes de ces applications en termes de bande passante, latence, gigue, etc. peuvent nécessiter la mise en œuvre d’une politique de routage différenciée dans le réseau là où le réseau IP utilise par défaut une politique unique de « plus court » chemin. La mise en œuvre de technique d’ingénierie de trafic à base de MPLS (Multi Protocol Label Switching) est souvent nécessaire afin d’ouvrir la possibilité de calcul de chemins contraints.
L’ingénierie de trafic n’est pas un nouveau concept en soit et était déjà utilisée dans des réseaux comme les réseaux ATM (Asynchronous Transfer Mode). Elle est également déployée de manière plus ou moins large au sein de réseaux IP afin d’adresser ce besoin de différentiation de routage pour différents types de trafic.
Dans cet article, nous allons rappeler dans un premier temps les concepts de base de l’ingénierie de trafic dans un réseau IP/MPLS, pour nous attarder ensuite sur les limitations de l’approche distribuée qui est actuellement déployée. Dans un second temps, cet article introduit l’architecture d’ingénierie de trafic centralisée utilisant un PCE (Path Computation Element) permettant de pallier ces limitations. Le fonctionnement du protocole de communication utilisé par le PCE est détaillé, ainsi que la mise en œuvre d’une architecture de routage utilisant un PCE. Cet article présente également l’analyse de plusieurs cas d’usage du PCE.
Nous abordons enfin les aspects sécurité liés à l’introduction du PCE et nous terminons par une vue non exhaustive du marché actuel.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Réseaux Télécommunications
(141 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Acquisition topologique
Il existe plusieurs manières pour un PCE de récupérer les données topologiques du ou des réseaux dont il est en charge.
5.1 Utilisation de l’IGP-TE
Tout comme dans le mode d’ingénierie de trafic distribuée, le PCE peut utiliser une adjacence protocolaire de type IGP-TE (IS-IS ou OSPF) afin de récupérer les informations topologiques du réseau. Le processus de synchronisation de la base topologique présent dans le protocole assurera en temps réel la mise à jour topologique du PCE.
La mise en œuvre d’une adjacence IGP-TE nécessite en général une connexion directe par un lien IP entre les deux nœuds extrémités de l’adjacence du fait de l’auto-découverte des voisins par des mécanismes multicast. Or, dans le cas d’un PCE, il est possible que, pour des raisons de sécurité, celui-ci soit hébergé dans une zone externe au réseau sans possibilité de lien direct. Une solution de type tunnel GRE (Generic Routing Encapsulation) par exemple peut être utilisée pour établir une adjacence IGP-TE à distance (figure 15).
HAUT DE PAGE5.2 Utilisation de BGP-LS
BGP-LS (BGP Link State) est une extension du protocole BGP (Border Gateway Protocol) définie dans la RFC 7752.
Cette extension permet de véhiculer des informations topologiques sur les liens et nœuds de différents domaines.
L’avantage de la solution BGP-LS est qu’elle est basée sur TCP et que la récupération topologique peut se faire très facilement à distance. Elle nécessite cependant que l’un des routeurs du réseau active la fonction BGP-LS et injecte la topologie issue de l’IGP-TE dans BGP-LS (figures 16 et 17).
HAUT DE PAGE5.3 PCEP-LS
Il peut exister des cas où un réseau de dispose pas d’IGP-TE ou de BGP-LS. Afin d’adresser ces cas, une solution est actuellement proposée au sein de l’IETF (Internet Engineering Task Force) afin de transporter les données topologiques...
Cet article fait partie de l’offre
Réseaux Télécommunications
(141 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Acquisition topologique
BIBLIOGRAPHIE
-
(1) - IETF – PCEP - Extension for Distribution of Link-State and TE Information. - https://datatracker.ietf.org/doc/draft-dhodylee-pce-pcep-ls/ (2018).
-
(2) - IETF – PCEP - Extensions for GMPLS. - https://datatracker.ietf.org/doc/draft-ietf-pce-gmpls-pcep-extensions/ (2017).
-
(3) - IETF - Path Computation Element communication Protocol extension for associating Policies and LSPs. - https://datatracker.ietf.org/doc/draft-ietf-pce-association-policy/ (2018).
-
(4) - IETF - Path Computation Element communication Protocol extension for signaling LSP diversity constraint. - https://datatracker.ietf.org/doc/draft-ietf-pce-association-diversity/ (2018).
-
(5) - IETF – PCEP - Extensions for Establishing Relationships Between Sets of LSPs. - https://datatracker.ietf.org/doc/draft-ietf-pce-association-group/ (2018).
DANS NOS BASES DOCUMENTAIRES
NORMES
-
RSVP-TE : Extensions to RSVP for LSP Tunnels. - RFC 3209 - 2001
-
Traffic Engineering (TE) Extensions to OSPF Version 2. - RFC 3630 - 2003
-
The Transport Layer Security Protocol Version 1.2. - RFC 5246 - 2008
-
IS-IS Extensions for Traffic Engineering. - RFC 5305 - 2008
-
Traffic Engineering Extensions to OSPF Version 3. - RFC 5329 - 2008
-
Path Computation Element Communication Protocol. - RFC 5440 - 2009
-
A Backward-Recursive PCE-Based Computation Procedure to Compute Shortest Constrained Inter-Domain Traffic Engineering Label Switched Paths. - RFC 5441 - 2009
-
The Application of the Path Computation Element Architecture to the Determination of a Sequence of Domains in MPLS and GMPLS. - RFC 6805 - 2012
-
...
Cet article fait partie de l’offre
Réseaux Télécommunications
(141 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive