Présentation
EnglishAuteur(s)
-
André VAPAILLE : Professeur à l’Université de Paris XI
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Depuis les années 50, les matériaux semi‐conducteurs ont révolutionné l’électronique, l’informatique et l’optoélectronique en permettant de réaliser une très grande variété de composants discrets et de circuits intégrés. Ils doivent leur succès à la très grande richesse de leurs propriétés électroniques et en particulier au fait qu’il est possible, en les dopant (c’est‐à‐dire en introduisant dans le matériau des impuretés convenables en quantité contrôlée) :
-
d’obtenir soit une conduction par électrons libres (comme dans les métaux), soit une conduction par trous libres (un trou étant une absence d’électron) ;
-
de contrôler, par la concentration des impuretés de dopage, la résistivité du matériau dans un domaine de valeurs compris entre 10 – 5 et 10 2 Ω · m.
La résistivité de ces matériaux est donc extrêmement sensible :
-
à l’état cristallin du matériau (amorphe, polycristallin, monocristallin) ;
-
au niveau de dopage (concentration des impuretés électriquement actives présentes dans le matériau).
Nous allons donc distinguer quatre types de matériau :
-
matériau monocristallin non dopé ou matériau intrinsèque ;
-
matériau monocristallin dopé ou matériau extrinsèque (pratiquement tous les composants semi‐conducteurs sont réalisés en matériau monocristallin dopé) ;
-
matériau polycristallin [grille des composants MOS (Métal Oxyde Semi‐conducteur)] ;
-
matériau amorphe (cellules solaires, écrans plats, etc.).
Pour satisfaire aux règles de normalisation, toutes les grandeurs ont été exprimées dans les unités du système international. Toutefois, il faut bien reconnaître que ce système n’est absolument pas utilisé par les spécialistes des matériaux et composants semi‐conducteurs qui lui préfèrent un système où les longueurs sont en centimètres et les énergies en électronvolts (eV). Le tableau 1 donne les facteurs de conversion à utiliser.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Matériau monocristallin non dopé ou matériau intrinsèque
Ce matériau est parfaitement isolant à 0 K (– 273 oC) et dans l’obscurité. En effet, tous les électrons sont alors non mobiles, qu’ils soient liés à un atome particulier ou qu’ils soient engagés dans les liaisons de valence entre deux atomes voisins. En apportant une énergie suffisante, supérieure à la largeur E G de la bande interdite, paramètre caractéristique du matériau (tableau 2), au moyen d’un photon ou en portant le matériau à une température suffisante, on brise des liaisons de valence et l’on crée alors simultanément et en quantités égales des électrons libres et des trous libres (c’est‐à‐dire des places vacantes pour des électrons) (figure 1).
Dès lors, la conduction est possible de deux façons :
-
par les électrons libres qui remontent le champ électrique ;
-
par les trous libres qui descendent le champ électrique (figure 2).
on appelle porteurs ou porteurs libres, les électrons ou les trous libres capables de transporter le courant.
La conductivité, σ i (Ω–1 · m–1),...
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Matériau monocristallin non dopé ou matériau intrinsèque
BIBLIOGRAPHIE
-
(1) - CASTAGNÉ (C.), VAPAILLE (A.) - Dispositifs et circuits intégrés semi‐conducteurs. - Dunod (1987).
-
(2) - MATHIEU (H.) - Physique des semi‐ conducteurs et composants électroniques. - Masson (1987).
-
(3) - SZE (S.M.) - Physics of semiconductor Devices. - 2nd Edition, John Wiley (1981).
-
(4) - THURMOND (C.D.) - J. Electrochem. - Soc. 122, 1133 (1975).
-
(5) - MORIN (F.J.), MAÏTA (J.P.) - Physical Review. - 96, 28 (1954).
-
(6) - RUNY AN (W.R.) - Silicon semiconductor Technology. - Mc Graw Hill, p. 179 (1965).
-
(7) - SZE (S.M.), IRVIN (J.C.) - Solid...
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive