Présentation

Article

1 - NATURE ET CONCENTRATION DES PORTEURS DE CHARGE

2 - CONDUCTION DANS UN ÉLECTROLYTE : APPROCHE MACROSCOPIQUE

3 - CONDUCTION DANS UN ÉLECTROLYTE : APPROCHE MICROSCOPIQUE

4 - MESURES DE CONDUCTIVITÉ ET NOMBRE DE TRANSPORT

5 - CONSÉQUENCES DE LA CONDUCTIVITÉ DES ÉLECTROLYTES

Article de référence | Réf : K840 v1

Nature et concentration des porteurs de charge
Conductivité des électrolytes

Auteur(s) : Christine LEFROU, Jacques FOULETIER, Pierre FABRY

Date de publication : 10 oct. 2010

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La conduction électrique d'un électrolyte, qu'il s'agisse d'une solution, d'un sel fondu, d'un polymère, d'un verre ou d'un matériau cristallin, est un phénomène assez complexe car plusieurs espèces chargées sont susceptibles de s'y déplacer. La diffusion et la migration sont décrites par des concepts macroscopiques et microscopiques. L'accent est mis sur les correspondances entre mobilités, coefficients de diffusion et conductivités molaires. Les principales méthodes de caractérisation sont développées, que ce soit dans la détermination de la conductivité ou l'identification des porteurs. Sont précisées certaines précautions à prendre, dans le choix de la cellule de mesure, celui des matériaux d'électrodes et des paramètres du signal électrique appliqué.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Il s'agit ici de présenter les propriétés, les caractéristiques, les mécanismes et les applications de la conduction électrique en se restreignant à une classe de matériaux appelés électrolytes. La conduction électrique dans ce type de matériau est toujours associée à des mouvements macroscopiques d'un ou plusieurs types d'ions qui rendent possible le passage d'un courant électrique. Il existe également des matériaux, dit à conduction mixte, qui présentent simultanément de manière significative des mouvements d'ions et d'électrons, mais ici il ne sera question que des conducteurs ioniques, strictement ou quasiment isolants électroniques.

Les matériaux électrolytes sont au cœur de tout système électrochimique, en particulier ils sont un élément essentiel des générateurs électrochimiques ou des cellules de procédés industriels, ou encore un élément clé de la corrosion de nombreux métaux. L'électrochimie fait toujours intervenir un assemblage de matériaux conducteurs électriques de natures différentes, typiquement la mise en contact entre un métal et un électrolyte. Les propriétés uniques mises en œuvre tiennent alors à ces interfaces particulières, dont l'étude est au centre de l'électrochimie. Cependant les propriétés conductrices des matériaux volumiques, loin des interfaces, sont également importantes pour analyser, caractériser et optimiser les systèmes électrochimiques. Ce sont, en particulier, ces propriétés de conduction qui gouvernent, en même temps que les caractéristiques géométriques de l'électrolyte utilisé, l'ampleur du terme appelé chute ohmique qui accompagne le passage d'un courant dans tout matériau et qui est aussi à l'origine des phénomènes d'effet Joule.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-k840


Cet article fait partie de l’offre

Caractérisation et propriétés de la matière

(115 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Nature et concentration des porteurs de charge

Il existe une grande variété de matériaux électrolytes, sous de multiples formes : liquides, solides, verres, polymères… Leur point commun est de présenter, à l'échelle atomique, une structure et une composition comportant des ions, c'est-à-dire des atomes ou édifices atomiques ayant une charge multiple de la charge élémentaire (qe = 1,6.10–19 C). Il faut aussi que des mouvements soient possibles, cela fait l'objet des paragraphes 2 et 3. Dans cette première partie, on passe en revue les différents types d'électrolytes, en décrivant leur structure microscopique et en précisant la nature et la quantité (exprimée, par exemple, en concentration) de chacun des porteurs de charge.

Du fait de la nature conductrice de ces matériaux, on peut montrer qu'à l'équilibre ils présentent tous une charge volumique nulle. On parle ainsi de la propriété d'électroneutralité. Elle est valable dans tout volume de matériau conducteur à l'échelle mésoscopique (cela devient faux à l'échelle atomique et/ou à proximité d'une interface). On peut également montrer qu'aux échelles de temps usuelles, cette propriété d'électroneutralité reste valable pour des matériaux conducteurs parcourus par un courant. À titre d'exemple, l'ordre de grandeur du temps caractéristique du retour à l'électroneutralité à partir d'une situation de déséquilibre initial est de une nanoseconde pour un électrolyte en solution aqueuse.

1.1 Solutions électrolytes

Toute solution comporte un solvant et des solutés plus ou moins concentrés. Dans le cas des solutions électrolytes, tout ou partie des solutés est sous forme ionique.

HAUT DE PAGE

1.1.1 Les solvants

Les propriétés des solvants nécessaires pour donner des solutions électrolytes avec une conduction intéressante sont assez nombreuses et il est parfois indispensable de faire des compromis. En dehors des considérations générales (coût, toxicité, inflammabilité, etc.), il faut tenir compte de la plage de température utilisable, de la compatibilité du solvant avec les composés dits actifs (en terme de solubilité, stabilité à l'abandon ou sous courant), et...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Caractérisation et propriétés de la matière

(115 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Nature et concentration des porteurs de charge
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BOCKRIS John O'M et al -   Modern Electrochemistry 1,  -  Ionics 769 p., Plenum Press (1998).

  • (2) - GIRAULT Hubert -   Électrochimie physique et analytique,  -  449 p., Presses Polytechniques et Universitaires Romandes, (2001).

  • (3) - TREMILLON Bernard -   La chimie en solvants non-aqueux,  -  239 p., Presses Universitaires de France, (1971).

  • (4) - AURBACH Doron, éditeur -   Non-aqueous Electrochemistry,  -  602 p., Marcel Dekker, (1999).

  • (5) - CHARLOT Gaston -   Chimie analytique quantitative, Tome I,  -  325 p., Masson, (1974).

  • (6) - BERNARD Maurice, BUSNOT Florent -   Usuel de chimie générale et minérale,  -  560 p., Bordas, (1984).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Caractérisation et propriétés de la matière

(115 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS