Présentation
EnglishRÉSUMÉ
La conduction électrique d'un électrolyte, qu'il s'agisse d'une solution, d'un sel fondu, d'un polymère, d'un verre ou d'un matériau cristallin, est un phénomène assez complexe car plusieurs espèces chargées sont susceptibles de s'y déplacer. La diffusion et la migration sont décrites par des concepts macroscopiques et microscopiques. L'accent est mis sur les correspondances entre mobilités, coefficients de diffusion et conductivités molaires. Les principales méthodes de caractérisation sont développées, que ce soit dans la détermination de la conductivité ou l'identification des porteurs. Sont précisées certaines précautions à prendre, dans le choix de la cellule de mesure, celui des matériaux d'électrodes et des paramètres du signal électrique appliqué.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Christine LEFROU : Maître de conférences à Grenoble INP (école Phelma)
-
Jacques FOULETIER : Professeur à l'université Joseph Fourier, Grenoble
-
Pierre FABRY : Professeur honoraire, université Joseph Fourier, Grenoble
INTRODUCTION
Il s'agit ici de présenter les propriétés, les caractéristiques, les mécanismes et les applications de la conduction électrique en se restreignant à une classe de matériaux appelés électrolytes. La conduction électrique dans ce type de matériau est toujours associée à des mouvements macroscopiques d'un ou plusieurs types d'ions qui rendent possible le passage d'un courant électrique. Il existe également des matériaux, dit à conduction mixte, qui présentent simultanément de manière significative des mouvements d'ions et d'électrons, mais ici il ne sera question que des conducteurs ioniques, strictement ou quasiment isolants électroniques.
Les matériaux électrolytes sont au cœur de tout système électrochimique, en particulier ils sont un élément essentiel des générateurs électrochimiques ou des cellules de procédés industriels, ou encore un élément clé de la corrosion de nombreux métaux. L'électrochimie fait toujours intervenir un assemblage de matériaux conducteurs électriques de natures différentes, typiquement la mise en contact entre un métal et un électrolyte. Les propriétés uniques mises en œuvre tiennent alors à ces interfaces particulières, dont l'étude est au centre de l'électrochimie. Cependant les propriétés conductrices des matériaux volumiques, loin des interfaces, sont également importantes pour analyser, caractériser et optimiser les systèmes électrochimiques. Ce sont, en particulier, ces propriétés de conduction qui gouvernent, en même temps que les caractéristiques géométriques de l'électrolyte utilisé, l'ampleur du terme appelé chute ohmique qui accompagne le passage d'un courant dans tout matériau et qui est aussi à l'origine des phénomènes d'effet Joule.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Opérations unitaires. Génie de la réaction chimique > Électrochimie > Conductivité des électrolytes > Conduction dans un électrolyte : approche macroscopique
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Conduction dans un électrolyte : approche macroscopique
2.1 Transport : migration, diffusion, convection
La conduction électrique est toujours associée à un déplacement d'espèces chargées. Dans une description de ce phénomène au niveau macroscopique, on distingue généralement trois types de transport, suivant la nature des forces qui sont à l'origine du déplacement des espèces chargées : convection, migration et diffusion. Dans la très grande majorité des milieux, on peut décrire ces phénomènes comme isotropes. Dans des solides monocristallins, on peut être amené à faire intervenir des caractéristiques non isotropes de la conduction, dans la mesure où certaines directions de transport de la matière sont préférentielles, d'autres interdites.
HAUT DE PAGE
Dans la mesure où les milieux électrolytes ne sont globalement pas chargés en volume, les phénomènes de convection qui entraînent tous les ions avec le même mouvement global ne contribuent pas en un point donné au passage du courant. Seuls les phénomènes de conduction au sens strict (c'est-à-dire diffusion et migration, cf. § 2.1.2 et 2.1.3) contribuent au passage global du courant. Cependant, on ne peut pas complètement ignorer les phénomènes de convection lorsqu'on étudie la conduction dans des milieux électrolytes fluides car ces derniers ont des conséquences sur la composition des milieux et donc indirectement sur leur conductivité.
HAUT DE PAGE
En présence d'un champ électrique , toute espèce chargée est soumise à une force, proportionnelle au champ, qui se traduit dans un milieu donné par un déplacement à une vitesse moyenne, elle-même proportionnelle au champ électrique (voir, par exemple, le modèle microscopique de frottements visqueux § 3.1.1). Les charges positives, les...
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conduction dans un électrolyte : approche macroscopique
BIBLIOGRAPHIE
-
(1) - BOCKRIS John O'M et al - Modern Electrochemistry 1, - Ionics 769 p., Plenum Press (1998).
-
(2) - GIRAULT Hubert - Électrochimie physique et analytique, - 449 p., Presses Polytechniques et Universitaires Romandes, (2001).
-
(3) - TREMILLON Bernard - La chimie en solvants non-aqueux, - 239 p., Presses Universitaires de France, (1971).
-
(4) - AURBACH Doron, éditeur - Non-aqueous Electrochemistry, - 602 p., Marcel Dekker, (1999).
-
(5) - CHARLOT Gaston - Chimie analytique quantitative, Tome I, - 325 p., Masson, (1974).
-
(6) - BERNARD Maurice, BUSNOT Florent - Usuel de chimie générale et minérale, - 560 p., Bordas, (1984).
-
...
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive