Présentation
En anglaisRÉSUMÉ
Les méthodes de Monte Carlo sont indispensables dans des domaines aussi variés que la finance, les télécommunications, la biologie ou encore les sciences sociales. Elles permettent de résoudre des problèmes centrés sur un calcul à l’aide du hasard. Cet article effectue une présentation de ces méthodes, au travers dans un premier temps des principes de base (calcul de sommes et intégrales, simulation à évènements discrets, etc.). Dans un second temps, une analyse de la précision de ces méthodes est proposée : elle aborde notamment les intervalles de confiance, les réplications indépendantes, les estimations par blocs, etc.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Monte Carlo methods are essential in domains as varied as finance, telecommunications, biology or even social sciences. They allow for solving problems centered on random calculation. This article firstly presents these methods via their basic principles (calculation of sums and integrals, discrete event simulation, etc.). An analysis of the precision of these methods is then provided; it notably deals with confidence intervals, independent replications, block estimates, etc.
Auteur(s)
-
Gerardo RUBINO : Directeur de recherche - Institut national de recherche en informatique et en automatique (INRIA) - Institut de recherche en informatique et systèmes aléatoires (IRISA), Rennes
-
Bruno TUFFIN : Chargé de recherche, INRIA, IRISA, Rennes
INTRODUCTION
Les méthodes de simulation Monte Carlo peuvent être vues comme des méthodes d'approximation, même s'il s'agit d'approximations au sens statistique du terme. Il n'y a pas un consensus absolu sur une définition précise de ce qu'est une technique de type Monte Carlo, mais la description la plus habituelle consiste à dire que les méthodes de ce type se caractérisent par l'utilisation du hasard pour résoudre des problèmes centrés sur un calcul. Elles sont en général applicables à des problèmes de type numérique, ou bien à des problèmes de nature elle-même probabiliste.
Du point de vue des applications, ces méthodes sont aujourd'hui indispensables dans des domaines aussi variés et différents que la finance, la mise au point de nouveaux microcomposants électroniques, la sismologie, les télécommunications, en ingénierie ou en physique, mais aussi en biologie, en sciences sociales, etc. Par exemple, en chimie, en physique, ou même en biologie, de nombreux problèmes exigent l'analyse des propriétés dynamiques d'un nombre tellement grand d'objets (particules atomiques, atomes, molécules ou macromolécules), que ceci ne peut se faire que par des techniques de type Monte Carlo.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Principes de base
Dans cette partie, nous décrivons les principes de base sur les types de calcul les plus habituellement réalisés à l'aide des techniques de Monte Carlo. Tout d'abord, les calculs de sommes et intégrales, mais également la résolution d'équations de divers types, les problèmes d'optimisation, de comptage, etc.
Les techniques de Monte Carlo ont été utilisées depuis plusieurs siècles, même si ce n'est qu'après la Seconde Guerre mondiale qu'elles ont acquis un véritable statut de méthode. Ainsi on en retrouve des traces aussi lointaines qu'à l'époque de Babylone et de l'Ancien Testament.
Plus récemment, en 1777, on les retrouve dans l'une des premières applications célèbres, celle du problème de l'aiguille de Buffon, pour donner une valeur approchée de π : on jette plusieurs fois une aiguille de longueur sur un sol formé de lattes parallèles qui créent des bandes de largeur d avec . Si p désigne la proportion d'essais ayant touché l'une des droites formant les séparations entre les lattes, alors le nombre π peut être estimé par . Cet algorithme convergeait nettement plus lentement que d'autres existant à l'époque.
Au début du vingtième siècle, les méthodes de Monte Carlo furent utilisées pour étudier l'équation de Boltzmann. On en retrouve également des traces dans les cours de l'école anglaise de statistiques, bien que leur utilisation dans ce cadre était uniquement didactique. En 1908, Student (W.S. Gosset) utilise un échantillonnage expérimental pour estimer un coefficient de corrélation. Dès lors, la fréquence d'utilisation de ces méthodes s'est amplifiée (Courant, Friedricks et Lewy en 1928, Kolmogorov en 1931 et Polya en 1938). L'utilisation systématique, par Ulam, Metropolis et von Neumann notamment, est intervenue à Los Alamos, pendant la préparation de la première bombe atomique, où ont collaboré de nombreux mathématiciens et physiciens de renom.
L'appellation...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Principes de base
BIBLIOGRAPHIE
-
(1) - BUCKLEW (J.A.) - Introduction to Rare Event Simulation - . Springer-Verlag, New York (2004).
-
(2) - CANCELA (H.), RUBINO (G.), TUFFIN (B.) - New measures of robustness in rare event simulation - . In F.B. Armstrong, M.E. Kuhl, N.M. Steiger and J.A. Joines (éd.), Proceedings of the 2005 Winter Simulation Conference, 519-527 (2005).
-
(3) - CHENG (R.C.H.), DAVENPORT (T.) - The problem of dimensionality in stratified sampling - . Management Science, 35(11), 1278-1296 (1989).
-
(4) - DEVROYE (L.) - Non-Uniform Random Variate Generation - . Springer-Verlag (1986).
-
(5) - FISHMAN (G.S.), HUANG (B.D.) - Antithetic Variates Revisited - . Communications of the ACM, 26(11), 964-971 (1983).
-
(6) - FISHMAN (G.S.) - Monte Carlo : Concepts, Algorithms and Applications - . Springer-Verlag (1996).
- ...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive