Présentation
EnglishRÉSUMÉ
Cet article expose les principales méthodes d’estimation fonctionnelle non paramétrique. Les modèles paramétriques présentent en général un paramètre d’intérêt de dimension infinie ; le plus souvent ce paramètre est une fonction que l’on cherche à estimer. Sont étudiées plus particulièrement les méthodes de la densité par projection, de la fonction de répartition, ainsi que celles de la densité spectrale. Ces méthodes présentent le grand intérêt de résister aux changements de modèles. Elles permettent aussi de guider le statisticien dans le choix d'un modèle paramétrique ; enfin, elles possèdent l’avantage d’être très efficaces pour la prévision. Quelques applications permettent l’illustration concrète de cette présentation.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Denis BOSQ : Professeur émérite à l’université Pierre-et-Marie-Curie, Paris 6
INTRODUCTION
Dans cet article, nous exposons les principales méthodes d’estimation fonctionnelle non paramétrique. Ces méthodes ont l'avantage d'être robustes : elles résistent bien aux changements de modèles ; elles permettent aussi de guider le statisticien dans le choix d'un modèle paramétrique ; enfin, elles sont très efficaces pour la prévision. En particulier, nous étudierons l’estimation de la fonction de répartition, de la densité, de la régression et de la densité spectrale. Quelques applications sont données au cours du texte.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Estimation de la fonction de répartition
À la fonction de répartition théorique F (exemple 2), on associe la fonction de répartition empirique :
Pour l’expliciter nous utiliserons la notation :
pour tout B ⊂ . Alors ;
donc F n (x) est la fréquence de l’événement Xi ∊ ]−∞, x]. On en déduit que nF n (x) suit la loi binomiale B(n, F (x)) :
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Estimation de la fonction de répartition
BIBLIOGRAPHIE
-
(1) - BERLINET (A.), DEVROYE (L) - A comparison of kernel density estimates - Publ. Inst. Statist. Univ. Paris, 38 (3), p. 3-59 (1994).
-
(2) - BLANKE (D.), PUMO (B.) - Optimal sampling for density estimation in continuous time - J. Time Ser. Anal., 24 (1), p. 1-24 (2003).
-
(3) - BOSQ (D.) - Test du χ2 généralisés. Comparation avec le test du χ2 classique - Revue Statist. Appliquée, 37 (1), p. 43-52 (1989).
-
(4) - BOSQ (D.) - Nonparametric statistic for stochastic processes. Estimation and prediction - Volume 110 of Lecture Notes in Statistics, 2nd edition, Springer-Verlag, New York (1998).
-
(5) - BOSQ (D.) - Functional tests of fit. In Goodness-of-fit tests and model validity - Stat. Ind. Technol., Birkhäuser (éd. Huber-Carol), Boston MA, p. 341–356 (2002).
-
(6) - BOSQ (D.), BLANKE (D.) - Inference...
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive