Présentation

Article

1 - LES PROBLÈMES POSÉS

2 - ESPACES ET PROBLÈMES USUELS

3 - THÉORÈME DE BANACH-STEINHAUS

  • 3.1 - Le théorème
  • 3.2 - Applications

4 - THÉORÈME DE HAHN-BANACH

  • 4.1 - Le théorème
  • 4.2 - Applications

5 - THÉORÈME DU GRAPHE FERMÉ

  • 5.1 - Le théorème
  • 5.2 - Applications

6 - APPLICATIONS DIVERSES

  • 6.1 - Méthodes variationnelles pour la résolution des équations
  • 6.2 - Une théorie générale des algorithmes de discrétisation

Article de référence | Réf : AF1223 v1

Théorème de Banach-Steinhaus
Bases fonctionnelles de l'analyse numérique

Auteur(s) : Claude BREZINSKI

Date de publication : 10 avr. 2013

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Il est souvent difficile de se faire une idée de l'intérêt des notions théoriques abordées dans le traité de Mathématiques pour l'ingénieur ou dans les livres d'analyse numérique et de mathématiques appliquées. Ces notions sont souvent présentées séparément et l'on a du mal à voir comment elles sont reliées . Comme dans d'autres domaines des mathématiques, l'analyse fonctionnelle a permis d'unifier un certain nombre de concepts, de problèmes et de méthodes de l'analyse numérique jusque-là sans liens ou, tout au moins, de leur donner une base commune. De l'analyse fonctionnelle jusqu'aux applications, on comprend comment tout se tient, tout s'enchaîne.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Functional bases of numerical analysis

It is often difficult to have an idea of the interest of the theoretical notions dealt with in the Mathématiques pour l'ingénieur treaty or in books dedicated to numerical analysis and applied mathematics. These notions are often presented separately and it is difficult to understand how they are linked together. As in other mathematical domains, the functional analysis has allowed for unifying a certain number of concepts, problems and numerical analysis methods which until then were not linked together or, at least, to give them a common basis. From the functional analysis to applications, one understands how everything is linked together.

Auteur(s)

  • Claude BREZINSKI : Docteur es Sciences Mathématiques - Professeur Émérite - Laboratoire Paul Painlevé UMR CNRS 8524 - Université des Sciences et Technologies de Lille

INTRODUCTION

Il est souvent difficile de se faire une idée de l'intérêt des diverses notions théoriques abordées dans le traité de Mathématiques pour l'ingénieur ainsi que dans les livres d'analyse numérique et de mathématiques appliquées. Elles sont d'habitude présentées séparemment les unes des autres et l'on a du mal à voir comment elles sont reliées et pourquoi. Le but de cet article est d'apporter, du moins partiellement, quelques éléments de réponse et de servir de lien entre différents articles de ce traité.

Comme dans d'autres domaines des mathématiques, l'analyse fonctionnelle a permis d'unifier un certain nombre de concepts, de problèmes et de méthodes de l'analyse numérique jusque là sans liens ou, tout au moins, de leur donner une base commune.

Nous avons voulu ici, en partant de l'analyse fonctionnelle et en allant jusqu'aux applications, montrer comment tout se tient, tout s'enchaîne. Le but recherché n'est en aucun cas d'essayer d'être exhaustif mais seulement d'illustrer cette idée par quelques exemples le plus souvent déjà étudiés dans d'autres articles. On pourra, en particulier, consulter [AF 190] [AF 191] [AF 106] [AF 1 220] [AF 1 221] [AF 1 111] [AF 508] [AF 101] [AF 1 380] [AF 567] [AF 568] [AF 520] [AF 488] [AF 1 372], les références qui y sont citées ainsi que les nombreux autres articles de ce traité sur les méthodes numériques pour les équations aux dérivées partielles. D'autres références de caractère général complètent la bibliographie. Celles en français ont été privilégiées.

Les démonstrations de certains résultats ont été données car elles permettent de mieux saisir les idées.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af1223


Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

3. Théorème de Banach-Steinhaus

Soient X et Y deux espaces de Banach et soit T une application linéaire de X dans Y. Muni de la norme

l'espace vectoriel des applications linéaires bornées de X dans Y est aussi un espace de Banach.

3.1 Le théorème

Voyons maintenant le théorème de Banach-Steinhaus.

Théorème 1

Soient X et Y deux espaces de Banach et (Tn) une suite d'opérateurs linéaires bornés de X dans Y. Soit E un sous-espace dense de X.

S'il existe M < ∞ tel que ∀n, et si ∀x ∈ E, existe alors ∀x ∈ X, existe.

De plus, soit T : X → Y défini par , x ∈ X. Alors T est un opérateur linéaire borné et

et donc T est continu.

Démonstration

x ∈ X et ∀ε > 0, ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Théorème de Banach-Steinhaus
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BREZINSKI (C.) -   Padé – Type Approximation and General Orthogonal Polynomials  -  ISNM, vol. 50, Birkhäuser-Verlag, Basel (1980).

  • (2) - BREZINSKI (C.) -   Projection Methods for Systems of Equations  -  North-Holland, Amsterdam (1997).

  • (3) - CHARTRES (B.), STEPLEMAN (R.) -   A general theory of convergence for numerical methods  -  SIAM J. Numer. Anal., 9, 476-492 (1972).

  • (4) - CIARLET (P.G.) -   Introduction à l'Analyse Numérique Matricielle et à l'Optimisation  -  Masson, Paris (1982).

  • (5) - CIARLET (P.G.) -   Linear and Nonlinear Functional Analysis With Applications  -  SIAM, Philadelphia (2013).

  • (6) - CROUZEIX (M.), MIGNOT (A.L.) -   Analyse Numérique des Équations Différentielles  -  2e éd. Masson, Paris (1989).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS