Présentation
EnglishRÉSUMÉ
Il est souvent difficile de se faire une idée de l'intérêt des notions théoriques abordées dans le traité de Mathématiques pour l'ingénieur ou dans les livres d'analyse numérique et de mathématiques appliquées. Ces notions sont souvent présentées séparément et l'on a du mal à voir comment elles sont reliées . Comme dans d'autres domaines des mathématiques, l'analyse fonctionnelle a permis d'unifier un certain nombre de concepts, de problèmes et de méthodes de l'analyse numérique jusque-là sans liens ou, tout au moins, de leur donner une base commune. De l'analyse fonctionnelle jusqu'aux applications, on comprend comment tout se tient, tout s'enchaîne.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Claude BREZINSKI : Docteur es Sciences Mathématiques - Professeur Émérite - Laboratoire Paul Painlevé UMR CNRS 8524 - Université des Sciences et Technologies de Lille
INTRODUCTION
Il est souvent difficile de se faire une idée de l'intérêt des diverses notions théoriques abordées dans le traité de Mathématiques pour l'ingénieur ainsi que dans les livres d'analyse numérique et de mathématiques appliquées. Elles sont d'habitude présentées séparemment les unes des autres et l'on a du mal à voir comment elles sont reliées et pourquoi. Le but de cet article est d'apporter, du moins partiellement, quelques éléments de réponse et de servir de lien entre différents articles de ce traité.
Comme dans d'autres domaines des mathématiques, l'analyse fonctionnelle a permis d'unifier un certain nombre de concepts, de problèmes et de méthodes de l'analyse numérique jusque là sans liens ou, tout au moins, de leur donner une base commune.
Nous avons voulu ici, en partant de l'analyse fonctionnelle et en allant jusqu'aux applications, montrer comment tout se tient, tout s'enchaîne. Le but recherché n'est en aucun cas d'essayer d'être exhaustif mais seulement d'illustrer cette idée par quelques exemples le plus souvent déjà étudiés dans d'autres articles. On pourra, en particulier, consulter [AF 190] [AF 191] [AF 106] [AF 1 220] [AF 1 221] [AF 1 111] [AF 508] [AF 101] [AF 1 380] [AF 567] [AF 568] [AF 520] [AF 488] [AF 1 372], les références qui y sont citées ainsi que les nombreux autres articles de ce traité sur les méthodes numériques pour les équations aux dérivées partielles. D'autres références de caractère général complètent la bibliographie. Celles en français ont été privilégiées.
Les démonstrations de certains résultats ont été données car elles permettent de mieux saisir les idées.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Espaces et problèmes usuels
Voyons d'abord quels sont les espaces vectoriels que l'on rencontre en analyse numérique et les problèmes que l'on y traite.
-
ou
Ce sont les espaces privilégiés de l'analyse numérique puisque tout problème en dimension infinie devra être remplacé par un problème en dimension finie. D'autre part l'ordinateur ne sait manipuler que des ensembles finis de nombres.
Les problèmes de base dans ou sont :
-
la résolution des systèmes d'équations linéaires ou non ;
-
les problèmes d'optimisation avec ou sans contraintes, linéaires ou non ;
-
les problèmes de valeurs propres ;
-
le calcul des racines des polynômes.
-
-
lp
C'est l'espace des suites infinies x = (xn ) avec la norme
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Espaces et problèmes usuels
BIBLIOGRAPHIE
-
(1) - BREZINSKI (C.) - Padé – Type Approximation and General Orthogonal Polynomials - ISNM, vol. 50, Birkhäuser-Verlag, Basel (1980).
-
(2) - BREZINSKI (C.) - Projection Methods for Systems of Equations - North-Holland, Amsterdam (1997).
-
(3) - CHARTRES (B.), STEPLEMAN (R.) - A general theory of convergence for numerical methods - SIAM J. Numer. Anal., 9, 476-492 (1972).
-
(4) - CIARLET (P.G.) - Introduction à l'Analyse Numérique Matricielle et à l'Optimisation - Masson, Paris (1982).
-
(5) - CIARLET (P.G.) - Linear and Nonlinear Functional Analysis With Applications - SIAM, Philadelphia (2013).
-
(6) - CROUZEIX (M.), MIGNOT (A.L.) - Analyse Numérique des Équations Différentielles - 2e éd. Masson, Paris (1989).
- ...
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive