Présentation
En anglaisRÉSUMÉ
Les applications des phénomènes interfaciaux sont extrêmement nombreuses et d'une importance économique considérable, pour exemple la catalyse hétérogène en pétroléochimie, ou la miniaturisation des systèmes en industrie électronique. En effet, les atomes se trouvant à la surface d'un solide ou d'un liquide présentent une coordinence moins importante que ceux situés au cœur de ce système : ils confèrent à la surface des propriétés tout à fait spécifiques. Cet article introduit des notions de thermodynamique des surfaces avant de se focaliser sur la compréhension de deux phénomènes physiques et physico-chimiques de surface, l'adsorption et la ségrégation. Il s’attarde également sur les conditions d’obtention des transitions de phase bidimensionnelle.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The applications of interfacial phenomena are extremely numerous and are of great economic importance, such as the heterogeneous catalysis in petroleochemistry or the miniaturization of systems in the electronic industry. Indeed, the atoms at the surface of a solid or a liquid present a lesser coordinations than those at the core of this system; they provide the surface with very specific properties. This article present notions of surface thermodynamics before focusing on the understanding of two surface physical and physico-chemical phenomena: adsorption and segregation. It also deals with the conditions for obtaining two-dimensional phase transitions.
Auteur(s)
-
Didier ROUXEL : Maître de Conférence au laboratoire de Physique des Milieux ionisés et Applications (LPMIA) – UMR 7040, Université Henri Poincaré Nancy I
-
Bernard WEBER : Directeur de Recherche au CNRS, LPMIA – UMR 7040, Université Henri Poincaré Nancy I
INTRODUCTION
Le domaine des surfaces revêt une importance particulière car tout corps, liquide ou solide, interagit avec le milieu ambiant à travers la surface qui le délimite. Or, les atomes se trouvant à la surface d'un solide ou d'un liquide présentent une coordinence moins importante que ceux situés au cœur de ce système. On conçoit donc que ces atomes confèrent à la surface des propriétés tout à fait spécifiques. Ainsi, l'énergie nécessaire pour augmenter la surface d'un solide est toujours positive, ce qui a pour conséquences, entre autres, que les systèmes condensés ont tendance, pour minimiser cette énergie de surface :
-
à diminuer l'étendue de cette surface ;
-
à réagir avec les molécules de l'atmosphère ambiante pour former une couche dite d'adsorption ;
-
à faire ségréger en surface l'élément du solide qui a la plus faible énergie superficielle ;
-
ou à conduire à des relaxations superficielles (modification des distances entre les plans cristallins), voire donner lieu à de profondes reconstructions superficielles.
Ces propriétés particulières donnent aux systèmes dispersés (présentant une grande surface spécifique) un rôle important dans des domaines très divers de la physique, de la chimie, mais aussi de la géologie et de la biologie. Certaines réactions chimiques, thermodynamiquement possibles, sont accélérées, ou sont favorisées quand elles sont en compétition avec d'autres réactions possibles, grâce à la surface de certains solides. Ce phénomène, la catalyse hétérogène, revêt une importance cruciale, par exemple en pétroléochimie. Des remarques analogues pourraient être faites dans les domaines de la métallurgie, de la corrosion, de l'adhésion et de la rupture des solides, de la lubrification, de la tribologie, de la croissance cristalline, de l'électronique, des microsystèmes , etc. À la limite, dans les nanosystèmes, quand le nombre d'atomes « de surface » devient équivalent, voire supérieur, au nombre d'atomes « de volume », la notion même de surface, comme délimitant un corps ou une phase, perd de son sens et la physique elle-même peut changer de nature.
Le présent article traite plus particulièrement de l'adsorption et de la ségrégation. Pour un panorama général de ces phénomènes et de leurs applications, on pourra consulter les ouvrages cités au § 1.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Passage de l'état bidimensionnel à l'état tridimensionnel. Mouillage
6.1 Mouillage complet. Mouillage incomplet
En physisorption, on a pris l'habitude d'utiliser le terme mouillage pour traiter de la façon dont un adsorbat passe de l'état bidimensionnel 2D à l'état tridimensionnel 3D.
Quand on augmente progressivement la pression p du gaz en équilibre avec le film, l'adsorbat finit par se condenser dans son état 3D sous la pression de vapeur saturante p 0, si celle-ci peut être atteinte. Dans le cas d'une surface adsorbante monocristalline, comme la face (0001) du graphite considérée (§ 5), il arrive qu'il s'adsorbe un nombre illimité de couches monomoléculaires à la suite de la première : par exemple, à la suite de celles considérées figures 8 et . On passe alors, continûment dans l'espace, de l'état 2D à l'état 3D qui se forme sous la pression p0 et l'on dit que l'on a affaire à un mouillage complet du substrat par l'adsorbat (croissance de type Frank-Van der Merwe). Ce cas semble constituer l'exception, du moins au-dessous du point triple 3D de l'adsorbat pour T < Tt 3D, c'est-à-dire dans le domaine de formation du solide 3D. Ainsi, sur ce graphite (0001), il n'y a guère qu'avec les gaz rares que l'on soit à peu près certain d'un mouillage complet (figure 10).
En règle générale, on a plutôt affaire à un mouillage incomplet, c'est-à-dire à un nombre limité de couches adsorbées (croissance du type Stranski-Krastanov). Dans ce cas, la phase 3D ne se forme pas dans la continuité du film, mais elle croît vraisemblablement au voisinage de défauts de la surface. Cela s'explique par le fait que, si l'adsorbat n'est pas constitué de molécules sphériques, la surface impose des structures 2D généralement...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Passage de l'état bidimensionnel à l'état tridimensionnel. Mouillage
DANS NOS BASES DOCUMENTAIRES
-
Métallographie par diffraction des rayons X, des électrons et des neutrons
-
Résolution d'une structure cristalline par rayons X
-
Méthode de microanalyse des surfaces et couches minces
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive