Présentation

Article

1 - PRÉSENTATION GÉNÉRALE DES PHÉNOMÈNES

2 - STRUCTURES SUPERFICIELLES

3 - THERMODYNAMIQUE DES SURFACES

4 - MODÈLES D'ADSORPTION ET DE SÉGRÉGATION

5 - TRANSITIONS DE PHASE BIDIMENSIONNELLE

6 - PASSAGE DE L'ÉTAT BIDIMENSIONNEL À L'ÉTAT TRIDIMENSIONNEL. MOUILLAGE

7 - CINÉTIQUE D'ADSORPTION ET DE DÉSORPTION

  • 7.1 - Vitesse d'adsorption. Rendement de choc. Quantité adsorbée
  • 7.2 - Adsorption directe. Adsorption avec état précurseur
  • 7.3 - Vitesse de désorption. Désorption thermique programmée

8 - CONCLUSION

Article de référence | Réf : AF3680 v1

Cinétique d'adsorption et de désorption
Surface des solides - Physisorption – Chimisorption – Ségrégation

Auteur(s) : Didier ROUXEL, Bernard WEBER

Relu et validé le 10 févr. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les applications des phénomènes interfaciaux sont extrêmement nombreuses et d'une importance économique considérable, pour exemple la catalyse hétérogène en pétroléochimie, ou la miniaturisation des systèmes en industrie électronique. En effet, les atomes se trouvant à la surface d'un solide ou d'un liquide présentent une coordinence moins importante que ceux situés au cœur de ce système : ils confèrent à la surface des propriétés tout à fait spécifiques. Cet article introduit des notions de thermodynamique des surfaces avant de se focaliser sur la compréhension de deux phénomènes physiques et physico-chimiques de surface, l'adsorption et la ségrégation. Il s’attarde également sur les conditions d’obtention des transitions de phase bidimensionnelle.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

The applications of interfacial phenomena are extremely numerous and are of great economic importance, such as the heterogeneous catalysis in petroleochemistry or the miniaturization of systems in the electronic industry. Indeed, the atoms at the surface of a solid or a liquid present a lesser coordinations than those at the core of this system; they provide the surface with very specific properties. This article present notions of surface thermodynamics before focusing on the understanding of two surface physical and physico-chemical phenomena: adsorption and segregation. It also deals with the conditions for obtaining two-dimensional phase transitions.

Auteur(s)

  • Didier ROUXEL : Maître de Conférence au laboratoire de Physique des Milieux ionisés et Applications (LPMIA) – UMR 7040, Université Henri Poincaré Nancy I

  • Bernard WEBER : Directeur de Recherche au CNRS, LPMIA – UMR 7040, Université Henri Poincaré Nancy I

INTRODUCTION

Le domaine des surfaces revêt une importance particulière car tout corps, liquide ou solide, interagit avec le milieu ambiant à travers la surface qui le délimite. Or, les atomes se trouvant à la surface d'un solide ou d'un liquide présentent une coordinence moins importante que ceux situés au cœur de ce système. On conçoit donc que ces atomes confèrent à la surface des propriétés tout à fait spécifiques. Ainsi, l'énergie nécessaire pour augmenter la surface d'un solide est toujours positive, ce qui a pour conséquences, entre autres, que les systèmes condensés ont tendance, pour minimiser cette énergie de surface :

  • à diminuer l'étendue de cette surface ;

  • à réagir avec les molécules de l'atmosphère ambiante pour former une couche dite d'adsorption ;

  • à faire ségréger en surface l'élément du solide qui a la plus faible énergie superficielle ;

  • ou à conduire à des relaxations superficielles (modification des distances entre les plans cristallins), voire donner lieu à de profondes reconstructions superficielles.

Ces propriétés particulières donnent aux systèmes dispersés (présentant une grande surface spécifique) un rôle important dans des domaines très divers de la physique, de la chimie, mais aussi de la géologie et de la biologie. Certaines réactions chimiques, thermodynamiquement possibles, sont accélérées, ou sont favorisées quand elles sont en compétition avec d'autres réactions possibles, grâce à la surface de certains solides. Ce phénomène, la catalyse hétérogène, revêt une importance cruciale, par exemple en pétroléochimie. Des remarques analogues pourraient être faites dans les domaines de la métallurgie, de la corrosion, de l'adhésion et de la rupture des solides, de la lubrification, de la tribologie, de la croissance cristalline, de l'électronique, des microsystèmes , etc. À la limite, dans les nanosystèmes, quand le nombre d'atomes « de surface » devient équivalent, voire supérieur, au nombre d'atomes « de volume », la notion même de surface, comme délimitant un corps ou une phase, perd de son sens et la physique elle-même peut changer de nature.

Le présent article traite plus particulièrement de l'adsorption et de la ségrégation. Pour un panorama général de ces phénomènes et de leurs applications, on pourra consulter les ouvrages cités au § 1.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3680


Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

7. Cinétique d'adsorption et de désorption

7.1 Vitesse d'adsorption. Rendement de choc. Quantité adsorbée

La vitesse maximale d'adsorption à une interface gaz-solide est la vitesse de collision des molécules gazeuses avec la surface. D'après la théorie cinétique des gaz, le nombre Z de collisions moléculaires, par unité de surface et de temps, ou fréquence de chocs, est donné par la relation de Hertz-Knudsen :

avec :

p
 : 
pression,
m
 : 
masse d'une molécule,
T
 : 
température thermodynamique,
k
 : 
constante de Boltzmann (1,38 × 10−23 J · K −1).

Exemple

Pour l'azote, m = 4,65 × 10−26  kg à T = 273 K et avec p = 1 Pa :

Comme le nombre moyen de sites d'adsorption sur un plan cristallin est de l'ordre de 1019 m−2, un site subira environ 3 × 103 collisions par seconde à T = 273 K sous une pression de 1 Pascal.

Cependant, quand une molécule gazeuse s'approche de la surface, elle est soumise à des forces d'interactions attractives et/ou répulsives qui, selon leur nature, vont conduire à l'adsorption ou non de cette molécule sur la surface. La probabilité b d'adsorption au cours d'un choc rendra compte de cette propriété en termes cinétiques. Ce facteur dépend de la nature de l'adsorbant et de celle de l'adsorbat, du degré de recouvrement et, quelquefois, de la température, bien que souvent l'adsorption soit un phénomène non activé. Pour l'adsorption des gaz sur les métaux, cette probabilité d'adsorption, quand le site est libre, est généralement comprise entre 0,1 et 1.

La conséquence de ces ordres de grandeur,...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Cinétique d'adsorption et de désorption
Sommaire
Sommaire

DANS NOS BASES DOCUMENTAIRES

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS