Présentation
En anglaisRÉSUMÉ
La modélisation et la simulation numériques sont devenues incontournables dans tous les domaines de la science et de la technique, tant au niveau académique qu'au niveau industriel. Ces outils numériques initialement développés comme une aide à la compréhension des phénomènes ont maintenant gagné en maturité et sont progressivement devenus des outils prédictifs. Les principales techniques de simulation, de l'échelle atomique à l'échelle macroscopique, sont exposées et chacune de ces techniques est illustrée par des exemples d'application.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Numerical modeling and simulation have become, both at the academic and industrial level, essential in every scientific and technical domain. Initially developed in order to help understand phenomena, these numerical tools have now achieved greater maturity and have progressively become predictive tools. The main simulation techniques from the atomistic to the macroscopic scales are presented and illustrated with application examples.
Auteur(s)
-
Mireille DEFRANCESCHI : Agrégée de chimie - Docteur d'état en sciences physiques
INTRODUCTION
La modélisation et la simulation numériques sont devenues incontournables dans tous les domaines de la science et de la technique, tant au niveau académique qu'au niveau industriel. Grâce aux progrès constants des moyens de calculs informatiques, la modélisation/simulation numérique a pris depuis ces dernières années une place de plus en plus grande dans des domaines aussi variés que la physique, la chimie et la biologie, mais également pour des systèmes humains, comme l'économie ou les sciences sociales. Dans le cas particulier de la science des matériaux qui va être au centre du présent document, de nouveaux outils numériques ont ainsi été développés pour répondre aux besoins croissants de la recherche et de l'industrie.
Ces outils numériques initialement développés comme une aide à la compréhension des phénomènes ont maintenant gagné en maturité et sont progressivement devenus des outils prédictifs. Actuellement, les modélisations et simulations numériques permettent d'effectuer des expériences à moindre coût ou même des expérimentations impossibles à réaliser.
Le but de ce document est de décrire les principales techniques de simulation numériques utilisées actuellement en science des matériaux. Les principales techniques de simulation, de l'échelle atomique à l'échelle macroscopique, sont exposées et chacune de ces techniques est illustrée par des exemples d'application. Certains sujets abordés, comme par exemple la simulation multi-échelle, en sont encore au stade du développement mais sont l'objet de développements constants.
MOTS-CLÉS
panorama méthodes numériques science des matériaux chimie du solide modélisation numérique simulation
KEYWORDS
overview | numerical methods | materials science | solid state chemistry | numerical modelisation | simulation
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Vers une plate-forme numérique
Lorsque plusieurs échelles entrent en jeu, la simulation est décomposée en différents niveaux, chacun représentant une échelle différente. Pour coordonner les niveaux entre eux, les ingénieurs utilisent :
-
soit des approches descendantes. Ils commencent par simuler le comportement global d'un avion et utilisent les résultats pour déterminer les conditions aux limites appliquées sur les niveaux inférieurs ;
-
soit des approches ascendantes. Dans ce cas, les résultats des simulations fines sont utilisées pour construire des modèles de comportements grossiers.
Il existe de très nombreuses méthodologies multi-échelles, qui reposent toutes sur le même principe fondamental : simuler chaque phénomène à l'échelle la plus pertinente. Pour cela, elles comportent deux points clés : le premier est de distinguer différentes échelles dans la modélisation et dans la simulation, et le second est de modéliser les relations existant entre ces différentes échelles.
Le modèle macroscopique et le (ou les) modèle(s) microscopique(s) ne sont pas indépendants. En effet, ils modélisent la même physique à des échelles différentes ; pour que le résultat de la simulation soit pertinent, ils doivent donc être cohérents l'un vis-à-vis de l'autre, en tout point et à chaque instant de la simulation. Pour cette raison, les modélisations multi-échelles comportent des couplages, c'est-à-dire des modèles d'interactions, entre les échelles. Il existe plusieurs façons de définir ces couplages.
On peut résumer sur un schéma (figure 4) les étapes précédemment décrites.
5.1 Couplage d'échelles
Le couplage d'échelles est une méthodologie complète pour simuler le comportement des matériaux sur une large échelle de temps et de taille. Le concept d'une approche multi-échelles est de :
-
juxtaposer les modèles pour couvrir toutes les échelles nécessaires (figure 5) à l'étude d'un système, la plus complète possible. Chacune des échelles donne accès à des informations bien précises comme celles présentées dans le tableau 2 appliquées à une étude de croissance de film ;
-
hiérarchiser...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Vers une plate-forme numérique
BIBLIOGRAPHIE
-
(1) - PHILLIPS (J.-C.), KLEINMAN (L.) - * - Phys. Rev., 116 (1959).
-
(2) - HARTREE (D.R.) - * - Proc. Camb. Phil. Soc., 24, p. 89 (1928).
-
(3) - FOCK (V.) - * - Zs. f. Phys., 61(1-2) (1930).
-
(4) - HOHENBERG (P.), KOHN (W.) - * - Phys. Rev., 136(3B), p. B864-B871 (1964).
-
(5) - KOHN (W.), SHAM (L.J.) - * - Phys. Rev., 140, p. A1133 (1965).
-
(6) - JONES (R.O.), GUNNARSSON (O.) - * - Rev. Mod. Phys., 61(3), p. 689-746 (1989).
-
(7) - PERDEW (J.P.), CHEVARY (J.A.), VOSKO (S.H.), KOBLAR (J.A.), PEDERSON (M.R.), SINGH (D.J.), FIOLHAIS (C.) - * - Phys....
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Liste des codes de chimie quantique et de physique de l'état solide https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software
Codes de dynamique des dislocations :
• Le code de simulation de dynamique des dislocations microMegas (mM) sous licence GPL est développé par de nombreux utilisateurs. Il est flexible et a été adapté au traitement des structures CFC, HC et CC principalement.
• Simulation hybride DD + éléments finis ou encore appelé modèle discret-continu (MDC). Cet outil de simulation repose sur un couplage entre les codes de simulation microMegas et ZeBulon en vue de traiter des états de contraintes (multimatériaux, polycristaux) ou des chargements complexes.
• Simulation de la dynamique d'un ensemble de dislocations coins rectilignes infinies (2.5D). Ce code de simulation simple à 2D est ajusté pour reproduire le plus fidèlement possible le comportement 3D de la déformation plastique.
Code de calcul de propriétés thermodynamiques :
Thermo-Calc http://www.thermocalc.se/ et http://www.thermocalc.com/DICTRA.htm
HAUT DE PAGECet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive