Présentation
En anglaisRÉSUMÉ
Qu'il soit dissipatif ou hamiltonien, un système chaotique est imprévisible, mais il est parfaitement décrit par des équations simples et déterministes. Le système est dit déterministe s'il est possible de prédire son évolution au cours du temps. L'étude de tels systèmes et de leurs comportements apparemment désordonnés est aujourd'hui utilisée dans de très nombreux domaines. On citera par exemple la géophysique, la météorologie, l'astronomie, la mécanique des fluides, l'économie, la biologie ou encore la sociologie.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Be it dissipative or Hamiltonian, a chaotic system cannot be predicted. However it can be perfectly described by simple and deterministic equations. The system is said to be deterministic where its evolution in the course of time can be predicted. The study of such systems and their apparently disorderly behaviours is currently utilized in a significant number of domains such as geophysics, meteorology, astronomy, fluid mechanics, economy, biology or even sociology.
Auteur(s)
-
Claudine DANG VU-DELCARTE : Professeur à l’université Paris-Sud
INTRODUCTION
L’origine des études sur le chaos remonte au début du siècle dernier avec les travaux d’Henri Poincaré sur le problème à N-corps. Le paragraphe 5.3 traite du problème restreint des 3-corps en intéraction gravitationnelle, exemple simple du chaos en mécanique céleste. Ces systèmes sont des systèmes hamiltoniens, nous consacrons une section au chaos hamiltonien (section 5) qui est observé et étudié afin, souvent, de le contrôler, dans de nombreux domaines comme les accélérateurs de particules (collimation de faisceaux) ou encore la physique des plasmas (confinement magnétique d’un plasma de fusion).
L’autre grande classe de systèmes dynamiques est constituée par les systèmes dissipatifs. Ils ont été très étudiés à partir des années 1960, suite aux travaux de E. Lorenz, M. Hénon, D. Ruelle, R. Thom ou encore M. Feigenbaum. Ainsi ont été introduites les notions d’attacteurs étranges et de catastrophes. Les domaines d’applications de ces concepts sont très nombreux. On citera, par exemple, la mécanique des fluides (instabilités et turbulence), l’électronique, l’astrophysique, les réactions chimiques, l’écologie, la biologie... Nous consacrons deux sections à ces systèmes selon qu’ils sont continus en temps (section 2) ou que ce sont des applications itérées (section 3). Le lecteur intéressé par le cheminement scientifique dans ce domaine, depuis Kepler jusqu’à aujourd’hui, pourra se référer au livre le Chaos dans la Nature de C. Letellier.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Chaos hamiltonien
Définition 22 Un système hamiltonien à n degrés de liberté [AF 106] est un système d’équations du mouvement de la forme :
où H = H (q, p, t) est le hamiltonien.
Les variables qi et pi sont appelées variables canoniques. L’espace des phases du système (100) est . On déduit de (100) :
En conséquence, si le Hamiltonien H ne dépend pas explicitement du temps, on aura :
Un système hamiltonien, indépendant du temps, est conservatif. Un volume de l’espace des phases au temps t sera conservé par les équations (100) (théorème de Liouville).
Définition 23 Un changement de variables :
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Chaos hamiltonien
BIBLIOGRAPHIE
-
(1) - ARNOLD (V.), AVEZ (A.) - Problèmes ergodiques de la mécanique classique - Gauthier-Villars (1967).
-
(2) - BERGE (P.), POMEAU (Y.), VIDAL (C.) - L’ordre dans le chaos - Hermann (1988).
-
(3) - BROCKER (T.) - Differentiable Germs and Catastrophes - London Math. Soc. Lect. Notes Series, 27, Cambridge University Press (1975).
-
(4) - DANG-VU (H.), DELCARTE (C.) - Bifurcations et Chaos - Ellipses (2000).
-
(5) - FEIGENBAUM (M.) - * - . – J. Stat. Phys. 19, 25-52 (1978).
-
(6) - FRØYLAND (J.) - Introduction to chaos and coherence - Institute of Physics Publishing, Bristol (1994).
-
(7)...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive