Présentation

Article

1 - MODÈLE MATHÉMATIQUE RÉGISSANT UN FLUIDE COMPRESSIBLE OU INCOMPRESSIBLE

  • 1.1 - Forme générale des équations de Navier-Stokes
  • 1.2 - Formulation adimensionnelle de l’équation de Navier-Stokes et nombre de Reynolds

2 - FORMULATION DES ÉQUATIONS DE NAVIER-STOKES INCOMPRESSIBLE EN TERMES DE COURANT-VORTICITÉ (COURANT-TOURBILLON)

3 - RÉSOLUTION DES ÉQUATIONS DE NAVIER-STOKES FORMULÉES EN VITESSE-PRESSION

4 - MODÈLE DE TURBULENCE

5 - CONCLUSION

6 - ANNEXES

Article de référence | Réf : AF1404 v1

Modèle de turbulence
Résolution numérique des équations de Navier-Stokes par la méthode des différences finies

Auteur(s) : Pierre SPITERI

Date de publication : 10 déc. 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La résolution des équations de Navier-Stokes par différences finies est présentée. Divers concepts sont présentés ainsi que le modèle mathématique régissant le comportement d’un fluide ; des cas particuliers de formulation des équations de Navier-Stokes sont indiqués. On considère deux formulations distinctes pour résoudre le problème cible ; d’une part la formulation courant-vorticité pour calculer un écoulement 2D où on a à résoudre simplement une équation de Poisson couplée à une équation de convection-diffusion. Une autre méthode permet aussi de résoudre les équations cibles formulées en vitesse-pression. Dans les deux cas l’analyse numérique des algorithmes est présentée. La dernière partie présente  la résolution des équations de Navier-Stokes en régime turbulent.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Pierre SPITERI : Professeur émérite - Université de Toulouse, INP – ENSEEIHT – IRIT, Toulouse, France

INTRODUCTION

Les équations de Navier-Stokes modélisent de nombreux phénomènes intervenant lors de l’étude d’écoulements. On peut citer entre autres les écoulements intervenant dans les circuits de refroidissement présents dans des chaudières, des réacteurs, l’aérodynamisme externe de véhicules comme les automobiles, les trains, les avions au moment du décollage, l’aérodynamisme interne des moteurs notamment dans les tuyères, les chambres de combustion, l'étude en cardiologie de la propagation du sang dans les veines ainsi que dans une certaine mesure les prévisions météorologiques, celle des courants marins, l’hydrologie, etc.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af1404


Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Modèle de turbulence

Les équations de Navier-Stokes modélisent aussi bien les écoulements laminaires que les écoulements turbulents. Dans le cas d’un écoulement turbulent les échelles de longueur et de temps sont tellement petites, qu’il est nécessaire de prendre, pour la discrétisation, un maillage extrêmement fin et des pas de temps extrêmement petits. Pour traiter de tels problèmes turbulents, compte tenu de la limitation de puissance des ordinateurs, il faut introduire un modèle macroscopique appelé aussi modèle de turbulence qui permet de prendre en compte ces phénomènes de petites échelles. Ces modèles de turbulence ont été introduits initialement par Reynolds. Pour de tels modèles on écrit la vitesse et la pression comme la somme d’une valeur moyenne et d’une perturbation oscillante, soit

U=U¯+Uetp=p¯+p ( 24 )

U¯ et p¯ représentent des valeurs moyennes sur un intervalle de temps T avec T supposé petit par rapport à l’échelle globale de temps mais grand par rapport à l’échelle de turbulence ; on a donc dans le cas bidimensionnel :

U¯(x,y,t)=1T...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Modèle de turbulence
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - AXELSSON (O.) -   Iterative solution methods,  -  Cambridge Univ. Press (1994).

  • (2) - BELLET (M.), COMBEAU (H.), FAUTRELLE (Y.) et al -   Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloys,  -  Int. J. of thermal Sciences, vol. 48, pp. 2013 – 2016 (2009).

  • (3) - CHASSAING (P.) -   Mécanique des fluides,  -  collection Polytech de l’INP – Toulouse, Cépadues (2010).

  • (4) - CHASSAING (P.) -   Turbulence en mécanique des fluides,  -  collection Polytech de l’INP – Toulouse, Cépadues (2000).

  • (5) - COMBEAU (H.), BELLET (M.), FAUTRELLE (Y.) et al -   Analysis of a numerical benchmark for columnar solidification of binary alloys,  -  Modeling of casting, welding and advanced processes (2012).

  • (6) - CUVELIER...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS