Présentation
EnglishRÉSUMÉ
En génie des procédés, la modélisation consiste en un ensemble d'équations mathématiques construit sur la base de données expérimentales et permettant de représenter les relations entre les sorties et les entrées du système. L’objectif du modèle est d’optimiser les conditions de fonctionnement du procédé au regard des diverses contraintes. Cette approche nécessite des connaissances acquises sur la physique et la chimie du système, et la capacité à résoudre ces équations. Cet article propose un aperçu de la modélisation des opérations unitaires en génie des procédés. Sont détaillés les différents aspects du processus de modélisation : représentation du système matériel, formulation du modèle. Des exemples viennent ensuite illustrer l'importance de la formulation de manière à minimiser les difficultés rencontrées lors de la simulation du modèle.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Xuân-Mi TRUONG-MEYER : Maître de Conférences à l'ENSIACET - Chercheur au Laboratoire de Génie Chimique (UMR CNRS/INPT/UPS 5503)
INTRODUCTION
Alternative à une stratégie de type essais-erreurs, la modélisation a montré toute son importance dans différents domaines : médecine, nucléaire, aéronautique, météorologie… La modélisation est pratiquée dans toutes les disciplines scientifiques mais également dans d'autres disciplines : économie, finances, sciences humaines… Dans tous les cas, il s'agit de construire une représentation la plus proche possible du fonctionnement d'un système réel afin d'en analyser le comportement ou de réagir à un comportement.
Un modèle est une structure formalisée utilisée pour rendre compte d'un ensemble de phénomènes qui possèdent entre eux certaines relations. Suivant les disciplines, le formalisme peut être très différent et on distingue le modèle vivant (modèle « animal » pour la médecine, la pharmacie, miniaturisation pour l'étude des écoulements…) du modèle virtuel pour lequel le formalisme est mathématique. En génie des procédés, le terme « modèle » se réfère à un ensemble d'équations mathématiques construit sur la base de données expérimentales acquises sur le système réel et permettant de représenter les relations entre les sorties et les entrées du système.
L'objectif de la modélisation est donc d'établir un système d'équations :
qui permet, connaissant les entrées (u) du modèle, de calculer les sorties (s) du modèle. Pour des systèmes en régime transitoire, le système d'équations est différentiel et fait intervenir le temps (t) en sus des données et sorties. Pour des systèmes non homogènes, la notion d'espace peut être introduite (x, y, z).
Se limiter à cette définition pourrait laisser penser qu'il suffit de maîtriser le système pour développer un modèle. Or, écrire les équations, si aisé cela puisse-t-il paraître au physicien, ne constitue qu'une partie de la tâche du modélisateur. Encore faut-il savoir les résoudre et trouver une solution et, qui plus est, une solution physique. La modélisation résulte donc d'un savant mélange entre les connaissances acquises sur la physique et la chimie du système (rôle du physicien) et la capacité à pouvoir résoudre les équations résultant de cette analyse (rôle du mathématicien).
Ce dossier propose dans un premier temps un aperçu général de la modélisation des opérations unitaires en génie des procédés puis s'intéresse plus particulièrement à l'approche par analyse phénoménologique basée sur les lois fondamentales de la physique. Les différents aspects du processus de modélisation sont présentés : représentation du système matériel, formulation du modèle. Au travers d'exemples, nous montrons l'importance de soigner la formulation du modèle de manière à minimiser les difficultés qui pourraient être rencontrées lors de la simulation.
Nous présentons très brièvement en fin de dossier l'approche multi-échelle, en montrant la progression suivie pour aller du microscopique vers le macroscopique. C'est à ce niveau que nous présentons l'intérêt de la simulation moléculaire et de la mécanique des fluides numérique.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Modèle, modélisation, simulation
1.1 Modèle et modélisation
En génie des procédés, le modèle mathématique est un excellent moyen de capitaliser de la connaissance et peut être considéré comme un vecteur essentiel du transfert de connaissances acquises en recherche vers les unités opérationnelles et décisionnelles. Il permet de pouvoir comprendre les phénomènes physiques, chimiques et biologiques mis en jeu pour mieux concevoir, optimiser, faire fonctionner, contrôler, faire évoluer les procédés de transformation de la matière.
L'utilisation des mathématiques pour fournir un lien rigoureux, systématique et quantitatif entre les phénomènes moléculaires et microscopiques d'une part et les performances macroscopiques du procédé a toujours été ancrée dans les principes pédagogiques et de recherche en génie des procédés depuis les efforts pionniers des années 1960. Avec l'augmentation des performances de l'outil informatique et les avancées en mathématiques appliquées, la modélisation a pris une importance considérable en génie des procédés dans les années 1980.
Les modèles peuvent être utiles dans toutes les phases d'ingénierie : de l'étape de recherche et développement à la conduite du procédé, et pour les études économiques. Dans la mesure du possible, l'activité de modélisation et le développement du procédé doivent donc se faire de manière simultanée. Ainsi, différents modèles sont de nos jours développés pour répondre aux divers objectifs recherchés lors de chaque étape du cycle de vie du procédé :
-
lors de la phase de développement pour démontrer une idée sur une base quantitative avant de l'appliquer au procédé ;
-
lors de la phase de conception pour le dimensionnement de l'installation, la sélection des conditions opératoires (réduction des coûts de recherche et développement par diminution du nombre d'expériences) ;
-
lors de l'évaluation des modifications d'une unité existante ;
-
préalablement à la phase opératoire pour l'optimisation et le contrôle du procédé, l'entraînement d'opérateurs ;
-
lors de la phase opératoire pour régler les problèmes de fonctionnement (dépannages d'installation), de dégoulotage, les études de...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Modèle, modélisation, simulation
BIBLIOGRAPHIE
-
(1) - JOULIA (X.) - Simulateurs de procédés. - [J 1 022] Opérations unitaires. Génie de la réaction chimique, mars 2008.
-
(2) - TOULHOAT (H.) - Modélisation moléculaire – Bases théoriques. - [J 1 011] [J 1 012] [J 1 013] Opérations unitaires. Génie de la réaction chimique, mars 2007.
-
(3) - TOULHOAT (H.) - Modélisation moléculaire – Mise en œuvre. - [J 1 014] Opérations unitaires. Génie de la réaction chimique, déc. 2007.
-
(4) - TOULHOAT (H.) - Modélisation moléculaire – Offre de logiciels et pespectives. - [J 1 015] Opérations unitaires. Génie de la réaction chimique, déc. 2007.
-
(5) - FLETCHER (D.-F.), XUEREB (G.) - Mécanique des fluides numériques. - [J 1 010] Opérations unitaires. Génie de la réaction chimique, déc. 2004.
ANNEXES
BELAUD (J.P.) - Architectures et Technologies des Systèmes Logiciels Ouverts : CAPE-OPEN, un standard pour l'interopérabilité et l'intégration des composants logiciels de l'ingénierie des procédés. - Thèse INPT (2002).
CAPE-OPEN Laboratory Network - * - www.co-lan.org.
HUSSAIN (M.A.) - Review of the applications of neural networks in chemical process control – simulation and online implementation. - Artificial intelligence in Engineering, 13, p. 55-68 (1999).
MOLGA (E.J.) - Neural network approach to support modelling of chemical reactors : problems, resolutions, criteria of application. - Chemical Engineering and processing, 42, p. 675-695 (2003).
VAN BRAKEL (J.) - Modeling in Chemical Engineering. - HYLE Int. J. Phil. of Chem., 6(2), p. 101-116 (2000).
CHEN (L.), HONTOI (Y.), HUANG (D.), ZHANG (J.), MORRIS (A.J.) - Combining first principles with black box techniques for reaction systems. - Control Engineering Practice, 12, p. 819-826 (2004).
OLIVIERA (R.) - Combining first principles modeling and artificial neural networks : a general framework. - Computers and Chemical Engineering, 28, p. 755-766 (2004).
PSICHOGIOS (D.C.), UNGAR (L.H.) - A hybrid...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive