Présentation
En anglaisAuteur(s)
-
Didier BLAVETTE : Professeur des Universités Groupe de Physique des Matériaux – UMR CNRS 6634 Normandie Université, Université et INSA de Rouen UFR Sciences et Techniques
-
François VURPILLOT : Maître de conférences Groupe de Physique des Matériaux – UMR CNRS 6634 Normandie Université, Université et INSA de Rouen UFR Sciences et Techniques
-
Bernard DECONIHOUT : Professeur des Universités Groupe de Physique des Matériaux – UMR CNRS 6634 Normandie Université, Université et INSA de Rouen UFR Sciences et Techniques
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les progrès constants réalisés dans le domaine des nanosciences et de leurs applications, les nanotechnologies, n'ont pu se faire que grâce au développement de techniques d'analyse et d'imagerie de plus en plus performantes. Pendant longtemps, les nanostructures telles que les transistors, les vannes de spin, les LED étaient structurées en deux dimensions en densité croissante sur les substrats de silicium (wafers). Aujourd'hui, l'industrie de la nanoélectronique se heurte à une limite importante empêchant l'intégration en surface des nano-objets. Un pas vient d'être franchi cette année 2013 avec le lancement par INTEL de la technologie 3D sans laquelle la densité d'intégration ne peut plus croître. Alors que les techniques d'analyses et d'imagerie en deux dimensions sont légions (spectrométrie de masse d'ions secondaires, microscopie électronique haute résolution, techniques de champs proche...), aucune, jusqu'à l'avènement de la sonde atomique tomographique assistée par laser ne permettait l'étude des interfaces et de la chimie de ces nouveaux nano-objets à l'échelle atomique et en trois dimensions.
La sonde atomique est un instrument assez ancien qui est née trois fois. Pendant longtemps, elle fut limitée à l'étude des métaux. Elle a récemment subi une révolution permettant son utilisation sur des matériaux isolants et conducteurs. Cela a ouvert la voie à l'imagerie analytique 3D avec une résolution inférieure au nanomètre.
Dans cet article sont décrits les principes fondamentaux sur lesquels reposent la technique et les technologies développées au cours de ces dernières années pour aboutir à la version moderne de l'instrument suite à de nombreux développements ingénieux développés dans le cadre des nanosciences. Aujourd'hui, c'est dans le domaine des nanotechnologies que la sonde atomique tomographique SAT continue d'être développée et de trouver des applications variées sur des problématiques modernes.
VERSIONS
- Version archivée 1 de juil. 1989 par Didier BLAVETTE, Alain MENAND
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanosciences : concepts, simulation et caractérisation > Sonde atomique tomographique SAT > Évaporation par effet de champ
Accueil > Ressources documentaires > Mesures - Analyses > Techniques d'analyse > Analyses de surface et de matériaux > Sonde atomique tomographique SAT > Évaporation par effet de champ
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanosciences : concepts, simulation et caractérisation > Sonde atomique tomographique SAT > Évaporation par effet de champ
Cet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(120 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Évaporation par effet de champ
Le principe de la sonde atomique tomographique repose sur l'ionisation et l'évaporation par effet de champ des atomes situés à la surface d'un matériau.
L'échantillon taillé sous la forme d'une fine pointe est porté à un potentiel V positif élevé de plusieurs kilovolts (figure 1). Le champ électrique ainsi généré au bout de la pointe est de la forme :
avec :
- R :
- rayon de courbure de la pointe,
- β :
- constante de l'instrument (β = 3 à 8).
Cette constante dépend de la forme de la pointe et de son environnement électrostatique. Un champ électrique atteignant 50 V/nm peut ainsi être créé pour R = 50 nm et V = 10 kV (β = 4). Ce champ très intense polarise les atomes en surface et conduit à leur évaporation sous la forme d'ions positifs n fois chargés.
Pour évaporer les atomes de surface, il faut les arracher de la surface et les ioniser positivement. L'énergie nécessaire Q0 est donc la somme de l'énergie de sublimation Λ et de première ionisation de l'atome I0 . Cette ionisation produit un électron transmis à l'échantillon en sorte que l'énergie finale à fournir est diminuée du travail de sortie de l'électron Φ :
Cet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(120 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Évaporation par effet de champ
BIBLIOGRAPHIE
-
(1) - BRANDON (D.G.) - On field evaporation. - Philosophical Magazine, 14, p. 803-820 (1966).
-
(2) - TSONG (T.T.) - Field ion image formation. - Surface Science, 70, p. 211-233 (1978).
-
(3) - HAYDOCK (R.), KINGHAM (D.R.) - * - Surf. Sci., 103, p. 239 (1981).
-
(4) - KELLY (T.F.), LARSON (D.J.) - Materials characterization. - 44, p. 59-85 (2000).
-
(5) - DECONIHOUT (B.), VURPILLOT (F.), GAULT (B.), DA COSTA (G.), BOUET (M.), BOSTEL (A.), BLAVETTE (D.), HIDEUR (A.), MARTEL (G.), BRUNEL (M.) - Toward a laser assisted wide-angle tomographic atom-probe. - Proc. Intern. Field Emission Symposium, Graz (2004), Surface and Interface Analysis, 39, p. 278-282 (2007).
-
(6) - KELLOG (G.), TSONG (T.T.) - Pulsed laser atom-probe. - J. Appl. Phys., USA, 51, no 2, p.1184 (1980).
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Sonde Atomique Tomographique Grand Angle Laser à très haute résolution en masse, BOSTEL Alain , DECONIHOUT Bernard , YAVOR Mickael , RENAUD ludovic, Date de dépôt 12/10/2007 Numero INIST 07 07178
Sonde Atomique Tomographique Grand Angle à évaporation assistée par une impulsion Laser femtoseconde " blanche ", DECONIHOUT Bernard, VELLA Angela, Francois Vurpillot, BREVET INTERNATIONAL n WO/2010/000574 Numéro de la demande int.: PCT/EP2009/057079 Date de la pub. int.:07.01.2010 Numero INIST 08_03218
HAUT DE PAGE2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Cameca (métrologie de semi-conducteurs) http://www.cameca.com
HAUT DE PAGECet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(120 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive