Présentation
RÉSUMÉ
La technique d'analyse PIXE est en théorie facile à mettre en œuvre. La pratique est plus complexe et repose sur certaines précautions expérimentales. Cet article présente l'instrumentation utilisée par cette technique. Puis il détaille les traitements nécessaires à l’expression des concentrations à partir des résultats expérimentaux et comment la méthode permet de cartographier dans la même analyse, plus d'une dizaine d'éléments. Enfin quelques exemples d'application viennent compléter cette présentation.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Philippe MORETTO : Professeur à l’université Bordeaux 1 Centre d’études nucléaires de Bordeaux-Gradignan
-
Lucile BECK : Enseignant-chercheur à l’Institut des sciences et techniques nucléaires Commissariat à l’énergie atomique (Saclay)
INTRODUCTION
Let article a pour but de fournir les informations pratiques et nécessaires à la mise en œuvre de la technique d’analyse PIXE dont les bases théoriques ont été exposées précédemment (article Émission X induite par particules chargées (PIXE) : théorie En principe, elle est simple à mettre en œuvre, puisqu’il suffit de placer un échantillon dans le faisceau, sans préparation particulière en dehors de sa mise sous vide, pour obtenir en quelques minutes une composition qualitative. En réalité, pour obtenir des résultats quantitatifs précis et optimiser la sensibilité, un certain nombre de précautions expérimentales doivent être prises quant à la forme de l’échantillon (solide, poudre déposée en couche mince ou frittée, liquide déshydraté ou préconcentré), à ses caractéristiques physiques (conductivité, état de surface...) et, enfin, au type de faisceau utilisé (ion, énergie, flux) ainsi qu’à la géométrie d’analyse. Depuis quelques années, la contrainte de la mise sous vide a même pu être levée puisque des faisceaux extraits à l’air sont maintenant disponibles, ce qui permet, entre autres, d’analyser des objets très encombrants à pression atmosphérique, notamment dans le domaine de l’art. Tous ces aspects seront développés dans le paragraphe « Instrumentation ».
Le chapitre suivant sera consacré aux traitements nécessaires à l’expression des concentrations à partir des résultats expérimentaux. Les codes actuels de déconvolution des spectres de fluorescence X permettent de résoudre la plupart des situations en cible mince et d’obtenir des résultats quantitatifs absolus sans faire appel à des échantillons standards. Les rendements d’émission X sont, en effet, bien connus ainsi que la réponse des détecteurs à semi-conducteur. Ces codes permettent également de travailler en cible épaisse, situation où interviennent des effets de matrice sous forme de ralentissement des projectiles et d’atténuation du rayonnement X émis. Ces phénomènes peuvent être modélisés de manière assez simple et l’analyse en cible épaisse est de plus en plus utilisée dans des cas où aucune alternative n’est possible.
Grâce à sa nature multiélémentaire, la méthode mettant en œuvre des microfaisceaux permet de cartographier plus d’une dizaine d’éléments au cours de la même analyse avec des dimensions de balayage variant de 20 µm à 2 mm et une résolution spatiale optimale de l’ordre de quelques centaines de nanomètres. L’utilisation de telles lignes de faisceaux est décrite dans ce traité (article Microsonde nucléaire[P 2 563]).
Quelques exemples d’application pris dans des disciplines aussi diverses que les sciences de la vie et l’environnement, les sciences de la Terre, les sciences des matériaux, l’archéométrie... sont présentés dans la dernière partie de l’article.
Les bases théoriques de la méthode ont été présentées dans l’article Émission X induite par particules chargées (PIXE) : théorie.
VERSIONS
- Version archivée 1 de oct. 1980 par Jean-Paul THOMAS
- Version archivée 2 de oct. 1992 par Jean-Paul THOMAS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Analyse PIXE par microsonde
Sur le plan technique, une des principales avancées des vingt dernières années fut l’apparition des microfaisceaux de particules. En effet se sont développées des méthodes de focalisation des faisceaux d’ions de quelques MeV qui permettent la mise en œuvre de la méthode PIXE à l’échelle microscopique. Il est alors possible, en balayant l’échantillon, d’obtenir une analyse point par point et donc une cartographie chimique élémentaire avec une résolution spatiale de l’ordre de 300 nm pour les sondes les plus performantes (cf. figure 12).
Ces microsondes permettent non seulement l’utilisation des techniques de fluorescence mais également des techniques plus spécifiquement nucléaires : analyse par réactions nucléaires, rétrodiffusion Rutherford (Rutherford Backscattering Spectrometry) ou encore microscopie ionique en transmission (Scanning Transmission Ion Microscopy). Toutes ces techniques sont complémentaires et peuvent parfois être employées simultanément. On peut ainsi accéder aux éléments légers par réaction nucléaire en complément de l’analyse PIXE. Par ailleurs, une information isotopique est disponible, contrairement à la fluorescence, qui donne une information chimique (détection en Z). On peut également mettre en œuvre simultanément PIXE et RBS. En effet, la technique de diffusion Rutherford autorise le dosage des principaux constituants de toute matière organique (C12, N14, O16), ce qui permet de déterminer la masse de l’échantillon irradié et donc d’exprimer les résultats quantitatifs en termes de concentration.
Les microsondes autorisent une très bonne sensibilité en analyse de routine avec la même limite relative inférieure de détection qu’un faisceau classique (10−6 g/g), mais surtout une limite absolue de l’ordre de 10−16 g qui est fonction de la résolution spatiale.
Grâce à l’utilisation de détecteurs X en dispersion d’énergie, la nature multiélémentaire de la technique permet de cartographier plus d’une dizaine d’éléments...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Analyse PIXE par microsonde
BIBLIOGRAPHIE
-
(1) - JOHANSSON (S.A.E.), CAMPBELL (J.L.) - PIXE : A novel technique for elemental analysis - . Wiley, Hichester, UK (1988).
-
(2) - JOHANSSON (S.A.E.), CAMPBELL (J.L.), MALMQVIST (K.G.) - PIXE - . vol. 133 in Chemical Analysis, J.D. Winefrodner éd., John Wiley & sons, Inc. (1995).
-
(3) - * - International Journal of PIXE : publication trimestrielle
-
(4) - * - X-ray Spectrometry. Éd. Wiley
-
(5) - * - Nuclear Instruments and Methods in Physics Research (section B). Éd. Elsevier
-
(6) - TROCELLIER (P.), TROUSLARD (P.) - Spectrométrie de collisions élastiques et de réactions nucléaires - . Techniques de l’Ingénieur. Spectrométrie de collisions élastiques et de réactions nucléaires. Applications (2002).
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Traité Analyse et Caractérisation
LE GRESSUS (C.) - Microscopie électronique à balayage - . [P 865] (1995).
DESPUJOLS (J.) - Spectrométrie d’émission des rayons X. Fluorescence X - . [P 2 695] (2000).
TROCELLIER (P.) - TROUSLARD (P.) - Spectrométrie de collisions élastiques et de réactions nucléaires. - [P 2 560] [P 2 561] (2002).
NENNER (I.) - DOUCET (J.) - DEXPERT (H.) - Rayonnement synchrotron et applications - . [P 2 700] (1996).
REVEL (G.) - DURAND (J.-P.) - Microsonde nucléaire - . [P 2 563] (1995).
THIERY (C.) - GERSTENMAYER (J.-L.) - Tomographie à rayons X - . [P 950] (2002).
MERMET (J.-M.) - POUSSEL (E.) - Couplage plasma induit par haute fréquence – spectrométrie de masse - . [P 2 720] (1999).
HAUT DE PAGE
Il existe une dizaine de logiciels de traitement de spectre PIXE développés, pour la plupart d’entre eux, par des laboratoires de recherche. Ils sont soit basés sur une déconvolution avec calcul des surfaces des pics ou bien...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive