Présentation

Article

1 - INSTRUMENTATION

2 - ANALYSE MULTIÉLÉMENTAIRE

3 - COMPARAISON AVEC D’AUTRES MODES D’EXCITATION

4 - ANALYSE PIXE PAR MICROSONDE

  • 4.1 - Microtomographie PIXE

5 - EFFETS SECONDAIRES INDUITS

  • 5.1 - Échantillons électriquement isolants
  • 5.2 - Dommages dus à l’irradiation

6 - DOMAINES D’APPLICATION

Article de référence | Réf : P2558 v3

Comparaison avec d’autres modes d’excitation
Émission X induite par particules chargées (PIXE) : applications

Auteur(s) : Philippe MORETTO, Lucile BECK

Date de publication : 10 mars 2004

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La technique d'analyse PIXE est en théorie facile à mettre en œuvre. La pratique est plus complexe et repose sur certaines précautions expérimentales. Cet article présente l'instrumentation utilisée par cette technique. Puis il détaille les traitements nécessaires à l’expression des concentrations à partir des résultats expérimentaux et comment la méthode permet de cartographier dans la même analyse, plus d'une dizaine d'éléments. Enfin quelques exemples d'application viennent compléter cette présentation.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Philippe MORETTO : Professeur à l’université Bordeaux 1 Centre d’études nucléaires de Bordeaux-Gradignan

  • Lucile BECK : Enseignant-chercheur à l’Institut des sciences et techniques nucléaires Commissariat à l’énergie atomique (Saclay)

INTRODUCTION

Let article a pour but de fournir les informations pratiques et nécessaires à la mise en œuvre de la technique d’analyse PIXE dont les bases théoriques ont été exposées précédemment (article Émission X induite par particules chargées (PIXE) : théorie En principe, elle est simple à mettre en œuvre, puisqu’il suffit de placer un échantillon dans le faisceau, sans préparation particulière en dehors de sa mise sous vide, pour obtenir en quelques minutes une composition qualitative. En réalité, pour obtenir des résultats quantitatifs précis et optimiser la sensibilité, un certain nombre de précautions expérimentales doivent être prises quant à la forme de l’échantillon (solide, poudre déposée en couche mince ou frittée, liquide déshydraté ou préconcentré), à ses caractéristiques physiques (conductivité, état de surface...) et, enfin, au type de faisceau utilisé (ion, énergie, flux) ainsi qu’à la géométrie d’analyse. Depuis quelques années, la contrainte de la mise sous vide a même pu être levée puisque des faisceaux extraits à l’air sont maintenant disponibles, ce qui permet, entre autres, d’analyser des objets très encombrants à pression atmosphérique, notamment dans le domaine de l’art. Tous ces aspects seront développés dans le paragraphe « Instrumentation ».

Le chapitre suivant sera consacré aux traitements nécessaires à l’expression des concentrations à partir des résultats expérimentaux. Les codes actuels de déconvolution des spectres de fluorescence X permettent de résoudre la plupart des situations en cible mince et d’obtenir des résultats quantitatifs absolus sans faire appel à des échantillons standards. Les rendements d’émission X sont, en effet, bien connus ainsi que la réponse des détecteurs à semi-conducteur. Ces codes permettent également de travailler en cible épaisse, situation où interviennent des effets de matrice sous forme de ralentissement des projectiles et d’atténuation du rayonnement X émis. Ces phénomènes peuvent être modélisés de manière assez simple et l’analyse en cible épaisse est de plus en plus utilisée dans des cas où aucune alternative n’est possible.

Grâce à sa nature multiélémentaire, la méthode mettant en œuvre des microfaisceaux permet de cartographier plus d’une dizaine d’éléments au cours de la même analyse avec des dimensions de balayage variant de 20 µm à 2 mm et une résolution spatiale optimale de l’ordre de quelques centaines de nanomètres. L’utilisation de telles lignes de faisceaux est décrite dans ce traité (article Microsonde nucléaire[P 2 563]).

Quelques exemples d’application pris dans des disciplines aussi diverses que les sciences de la vie et l’environnement, les sciences de la Terre, les sciences des matériaux, l’archéométrie... sont présentés dans la dernière partie de l’article.

Les bases théoriques de la méthode ont été présentées dans l’article Émission X induite par particules chargées (PIXE) : théorie.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v3-p2558


Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Comparaison avec d’autres modes d’excitation

L’émission X peut être induite par différentes sondes excitatrices : particules chargées lourdes comme les protons ou particules alpha (PIXE), électrons (EPMA, EDX), photons X et enfin photons gamma issus de sources radioactives. Chacune des techniques d’analyse qui en résultent présente un intérêt spécifique comme sa sensibilité analytique, une grande accessibilité par une large communauté scientifique ou bien encore parce qu’elle peut être mise en œuvre à l’échelle microscopique. Sur ce dernier point, les techniques basées sur l’utilisation de photons gamma ou l’utilisation de photons X issus de tubes classiques à rayons X (XRF) ne peuvent rivaliser avec les sources de rayonnement synchrotron (SXRF) aux faisceaux beaucoup plus brillants.

3.1 Utilisation des photons X (XRF et SXRF)

Chronologiquement, les photons X constituèrent la première sonde utilisée, ces derniers étant issus de tubes X classiques. Cette technique (XRF) est aujourd’hui assez répandue sous la forme d’appareils commerciaux vendus clés en main et facilement exploitables. Pour plus de détails se reporter dans ce traité à l’article Spectrométrie d’émission des rayons X. Fluorescence X [109]. Le rayonnement synchrotron est une source X qui s’est développée depuis une trentaine d’années auprès des anneaux de stockage d’électrons pour la physique des particules. Aujourd’hui, des anneaux sont spécialement construits à cet effet. Les électrons relativistes, se déplaçant à une vitesse proche de celle de la lumière sur des trajectoires courbes, subissent une accélération centrale et émettent un rayonnement électromagnétique continu sur une gamme de longueur d’onde qui s’étend des UV aux X durs. Sur les sources modernes (3e et 4e générations), le rayonnement est émis de manière très intense dans un cône étroit vers l’avant de la trajectoire. Des lignes de lumière microfocalisées permettent d’obtenir des faisceaux submicroniques...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Comparaison avec d’autres modes d’excitation
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - JOHANSSON (S.A.E.), CAMPBELL (J.L.) -   PIXE : A novel technique for elemental analysis  -  . Wiley, Hichester, UK (1988).

  • (2) - JOHANSSON (S.A.E.), CAMPBELL (J.L.), MALMQVIST (K.G.) -   PIXE  -  . vol. 133 in Chemical Analysis, J.D. Winefrodner éd., John Wiley & sons, Inc. (1995).

  • (3) -   *  -  International Journal of PIXE : publication trimestrielle

  • (4) -   *  -  X-ray Spectrometry. Éd. Wiley

  • (5) -   *  -  Nuclear Instruments and Methods in Physics Research (section B). Éd. Elsevier

  • (6) - TROCELLIER (P.), TROUSLARD (P.) -   Spectrométrie de collisions élastiques et de réactions nucléaires  -  . Techniques de l’Ingénieur. Spectrométrie de collisions élastiques et de réactions nucléaires. Applications (2002).

  • ...

DANS NOS BASES DOCUMENTAIRES

    Traité Analyse et Caractérisation

    LE GRESSUS (C.) - Microscopie électronique à balayage - . [P 865] (1995).

    DESPUJOLS (J.) - Spectrométrie d’émission des rayons X. Fluorescence X - . [P 2 695] (2000).

    TROCELLIER (P.) - TROUSLARD (P.) - Spectrométrie de collisions élastiques et de réactions nucléaires. - [P 2 560] [P 2 561] (2002).

    NENNER (I.) - DOUCET (J.) - DEXPERT (H.) - Rayonnement synchrotron et applications - . [P 2 700] (1996).

    REVEL (G.) - DURAND (J.-P.) - Microsonde nucléaire - . [P 2 563] (1995).

    THIERY (C.) - GERSTENMAYER (J.-L.) - Tomographie à rayons X - . [P 950] (2002).

    MERMET (J.-M.) - POUSSEL (E.) - Couplage plasma induit par haute fréquence – spectrométrie de masse - . [P 2 720] (1999).

    HAUT DE PAGE

    2 Logiciels de traitement

    Il existe une dizaine de logiciels de traitement de spectre PIXE développés, pour la plupart d’entre eux, par des laboratoires de recherche. Ils sont soit basés sur une déconvolution avec calcul des surfaces des pics ou bien...

    Cet article est réservé aux abonnés.
    Il vous reste 92% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Techniques d'analyse

    (289 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS