Présentation

Article

1 - PRINCIPE DE FONCTIONNEMENT DE LA SECM

2 - MODES D'UTILISATION DE LA SECM

3 - PRINCIPALES APPLICATIONS DE LA SECM

4 - INSTRUMENTATION

Article de référence | Réf : P2132 v1

Principe de fonctionnement de la SECM
Microscopie électrochimique

Auteur(s) : Fethi BEDIOUI, Sophie GRIVEAU, Alain PAILLERET*

Date de publication : 10 juin 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Fethi BEDIOUI : Directeur de recherche au CNRS

  • Sophie GRIVEAU : Maître de conférences à l'École nationale supérieure de chimie de Paris

  • Alain PAILLERET* : Maître de conférences à l'université Pierre et Marie Curie – Paris Universitas - * la contribution de cet auteur a porté principalement sur le couplage électrochimie/microscopies en champ proche

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

L'électrochimie procure, par nature, une contribution de toute première importance au développement des nanosciences . Il suffit pour cela de réaliser, par exemple, que des processus élémentaires de corrosion ou d'électrocristallisation modifient l'aspect et la composition d'interfaces métal/solution d'abord à l'échelle atomique avant de produire des répercussions évidentes à une échelle nanométrique. Par ailleurs, l'électrochimie permet, dans une approche principalement de type « bottom-up », de générer sur des surfaces conductrices des structures diverses et variées, cristallines ou amorphes, organiques, inorganiques ou métalliques à partir de solutions contenant des espèces dissoutes, ioniques ou neutres, monoatomiques ou moléculaires. Ces structures pourront prendre la forme de dépôts localisés plus ou moins clairsemés ou bien encore de films fins uniformes. Par le biais d'un contrôle rigoureux des conditions de dépôt (paramètres électrochimiques, composition de la solution électrolytique utilisée…), l'électrochimie permet donc d'accéder, dans la région de l'interface conducteur électronique/solution, à une grande diversité de nano-objets (nanoplots, nanofils, nanotubes, nanocristaux, nanoparticules, nanomotifs, films d'épaisseur submicronique…) dont une au moins des dimensions se limite à quelques nanomètres. Si les techniques électrochimiques classiques permettent effectivement la préparation d'une vaste diversité de nano-objets, elles offrent également l'accès par exemple à la caractérisation directe, globale ou locale, de la réactivité électrochimique et/ou de la composition chimique d'interfaces électrochimiques. Cependant, elles permettent également l'étude, parfois indirecte, d'un certain nombre de propriétés, comme le métabolisme de systèmes biologiques (par exemple des cellules) via la détection électrochimique de ses métabolites (surtout lorsque ceux-ci sont électroactifs bien sûr).

À l'échelle locale, les propriétés (électro)chimiques et topographiques d'un échantillon sont accessibles à l'aide de la microscopie électrochimique (ou SECM pour Scanning ElectroChemical Microscopy), inventée à la fin des années 1980, grâce à l'utilisation d'une électrode miniaturisée jouant le rôle de sonde. La SECM est, en effet, une technique de microscopie à sonde locale, offrant la possibilité d'imager la réactivité électrochimique d'échantillons de différentes natures ou encore d'en modifier localement les propriétés. Il permet d'examiner la surface d'échantillons en les balayant par des électrodes miniaturisées, qui vont recueillir un signal indicatif de la réactivité redox locale de celui-ci, donnant ainsi une vision à l'échelle micrométrique de la surface. L'utilisation de la SECM constitue une avancée majeure de l'électrochimie, rendue possible grâce à la miniaturisation des électrodes et à la possibilité de mesurer de très faibles courants. Elle offre tout un panel d'applications allant de l'imagerie électrochimique in situ à la structuration locale microscopique de surface.

L'élaboration de la SECM a débuté à la fin des années 1980 simultanément dans deux laboratoires d'électrochimie [1] [2]. C'est une technique apparentée aux microscopies en champ proche, telles que la microscopie à effet tunnel (STM, Scanning Tunneling Microscopy) ou la microscopie à force atomique (AFM, Atomic Force Microscopy). En SECM, le rôle de sonde est assuré par une ultramicroélectrode (UME), permettant notamment d'imager la réactivité redox locale d'échantillons solides ou liquides, mais qui peut aussi servir d'outil de modification locale de surfaces solides. Par analogie avec les autres microscopies AFM et STM [3], l'UME est également appelée « tip » (pointe) même si la plupart des UME utilisées en SECM possèdent des géométries disque plan (et non pas en forme de pointe).

Nous avons choisi de recourir aux abréviations et notations utilisées dans la littérature internationale par souci d'homogénéité (une liste des abréviations est disponible à la fin du document). Par ailleurs, le lecteur est invité à se reporter à l'article [P 2 128] [4] des Techniques de l'Ingénieur pour plus de précisions sur les UME (principe, fabrication et applications des UME).

Remarque : les microscopies en champ proche ou assimilées sont le plus souvent abrégées sous leur acronyme anglais (STM, AFM, SECM) selon une pratique internationale. Ces abréviations sont à la fois utilisées pour désigner la technique et l'outil (le microscope).

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-p2132


Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. Principe de fonctionnement de la SECM

Le principe de la SECM repose sur la mesure du courant traversant l'UME (électrode de rayon r allant de quelques nanomètres à 25 μm) pendant que celle-ci balaye la surface d'un échantillon en le survolant à une faible distance. L'échantillon, également appelé « substrat », peut être solide ou liquide (cependant, nous nous limiterons au cas de substrats solides). La présence de l'échantillon à faible distance de l'UME va entraîner une perturbation de la réponse électrochimique de la sonde, ce qui donne accès à des informations sur la nature et les propriétés du substrat. L'UME constitue ainsi la sonde SECM : la résolution de la SECM sera ainsi limitée par la taille de l'UME et sa sensibilité par le courant minimal pouvant être mesuré précisément à celle-ci.

La figure 1 représente l'ensemble du système nécessaire pour les manipulations SECM : un système de déplacement tridirectionnel de l'UME par rapport à l'échantillon ainsi qu'un potentiostat permettant l'imposition du potentiel et les mesures simultanées du courant à la sonde. Le microscope électrochimique doit en effet permettre de positionner précisément l'UME à proximité de l'échantillon, puis de le balayer latéralement dans un plan (x) défini par l'expérimentateur. Le positionnement précis de la sonde vis-à-vis de l'échantillon est le plus souvent réalisé au moyen d'éléments piézoélectriques, s'inspirant en cela des dispositifs développés pour les microscopies en champ proche comme les microscopes STM ou AFM. L'instrumentation est détaillée à la fin de ce dossier dans le paragraphe 4.1.

L'ensemble sonde/échantillon est immergé dans une solution électrolytique contenant généralement une espèce électroactive, électro-oxydable ou électro-réductible (qui peut être O2 dissous en solution), l'échantillon solide étant placé au fond de la cellule électrochimique....

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Principe de fonctionnement de la SECM
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SALVAN (F.), THIBAUDAU (F.) -   Microscopie à sonde locale.  -  [P 895]. Base Techniques d'analyse (1999).

  • (2) - BEDIOUI (F.) -   Voltampérométrie. Perfectionnement des techniques  -  [P 2 128]. Base Techniques d'analyse (1999).

  • (3) - SOULARUE (P.), GIDROL (X.) -   Puces à ADN.  -  [RE 6]. Base Bioprocédés (2002).

1 Sources bibliographiques

LIU (H.Y.), FAN (F.R.F.), LIN (C.W.), BARD (A.J.) - * - J. Am. Chem. Soc., 108, p. 3838 (1986).

ENGSTROM (R.C.), WEBER (M.), WUNDER (D.J.), BURGESS (R.), WINQUIST (S.) - * - Anal. Chem., 58, p. 844 (1986).

SALVAN (F.), THIBAUDAU (F.) - * - [P 895] Techniques de l'Ingénieur (1999).

BEDIOUI (F.) - * - [P 2 128] Techniques de l'Ingénieur, Paris (1999).

MIOMANDRE (F.), SADKI (S.), AUDEBERT (P.), MEALLET-RENAULT (R.) - Électrochimie : Des concepts aux applications. - Dunod, Paris (2005).

BARD (A.J.), FAN (F.-R.F.), MIRKIN (M.V.) (Eds.) - Scanning electrochemical Microscopy. - In Electroanalytical Chemistry, Marcel Dekker, New York, vol. 18 (1994).

BARD (A.J.), FAULKNER (L.R.) - Electrochemical methods Fundamentals and application. - Second Edition, John Wiley and Sons, New York (2001).

KANOUFI (F.) - * - Actualité Chimique, 311, p. 36 (2007).

MIRKIN (M.V.), HORROCKS (B.R.) - * - Anal. Chim. Acta, 406, p. 119 (2000).

BARD (A.J.), MIRKIN (M.V.) - Scanning electrochemical Microscopy. - Marcel Dekker, New York (2001).

AMPHLETT (J.L.), DENUAULT (G.J.) - * - Phys. Chem. B, 102, p. 9946 (1998).

WEI (C.), BARD (A.J.), MIRKIN (M.V.) - * - J. Phys. Chem., 99, p. 16033 (1995).

WITTSTOCK (G.), BURCHARDT (M.), PUST (S.E.), SHEN (Y.), ZHAO (C.) - * - Angew. Chem. Inter. Ed., 46, p. 1548 (2007).

COMBELLAS (C.), FERMIGIER (M.), FUCHS (A.), KANOUFI (F.) - * - Anal. Chem., 77, p. 7966 (2005).

FUCHS (A.) - Développements de la microscopie...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS