Présentation
EnglishNOTE DE L'ÉDITEUR
La norme NF EN ISO 14253-1 de décembre 2013 citée dans cet article a été remplacée par la norme NF EN ISO 14253-1 (E10-201-1) "Spécification géométrique des produits (GPS) - Vérification par la mesure des pièces et des équipements de mesure - Partie 1 : règles de décision pour contrôler la I104conformité ou la non-conformité à la spécification" Révision 2018
Pour en savoir plus, consultez le bulletin de veille normative VN1802 (mars 2018).
RÉSUMÉ
Savoir estimer ses incertitudes est primordial pour toute entreprise. A ce jour, il n'existe qu'une seule méthode pour y parvenir, mais deux techniques de calcul sont à disposition, à savoir celle du Guide pour l'expression de l'incertitude de mesure (GUM) qui consiste à propager les variances, et celle de son Supplément 1 basé sur la simulation de Monte Carlo, c'est-à-dire la propagation des distributions. L'objet de cet article est de dresser le bilan de ces deux méthodes complémentaires en montrant l'intérêt de la méthode numérique en se basant sur quelques exemples.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
François HENNEBELLE : Ingénieur Arts et Métiers – Enseignant-chercheur – Université de Bourgogne / Le2i
-
Thierry COOREVITS : Ingénieur Arts et Métiers – Enseignant-chercheur – Arts et Métiers ParisTech Lille / MSMP
INTRODUCTION
Le supplément 1 (JCGM 101:2008) du guide pour l’expression des incertitudes de mesure de 2008 complète le GUM (Guide to the expression of uncertainty in measurement) (JCGM 100:2008) en proposant une nouvelle approche pour l’estimation des incertitudes de mesure. Il concerne la propagation des distributions des variables (paramètres) d’entrée à travers un modèle mathématique du processus de mesure. C’est une alternative pratique du GUM lorsque celui-ci n’est pas facilement applicable, par exemple, si la propagation sur la base du développement de Taylor au premier ordre n’est pas satisfaisante (linéarisation du modèle inadéquate) ou si la fonction de densité de probabilité pour la grandeur de sortie s'écarte sensiblement d'une distribution gaussienne (conduisant à des intervalles de confiance irréalistes). Il fournit donc une approche générale numérique qui est compatible avec l’ensemble des principes généraux du GUM. L’approche s’applique aux modèles ayant une grandeur de sortie unique. Le supplément 2 de 2011 (JCGM 102:2011), non traité ici, est une extension à un nombre quelconque de grandeurs de sortie.
Après avoir rappelé le principe de l’estimation des incertitudes par la méthode analytique et les inconvénients de celle-ci, l’article expose le principe de la méthode de Monte Carlo en comparaison avec la méthode analytique. Les contraintes et les inconvénients de cette méthode numérique sont également exposés. Le document est basé sur un maximum d’exemples pour donner accès à cette technique au plus grand nombre de personnes.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Génie industriel > Métier : responsable qualité > Méthodes de mesure > Propagation des distributions - Détermination des incertitudes par la méthode de Monte Carlo > Limites de la méthode analytique
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Limites de la méthode analytique
2.1 Prise en compte des lois de densité de probabilité
Si on examine la méthode présentée précédemment, il est clair qu’il s’agit d’une méthode de propagation de variances. Le problème de la distribution intervient à deux niveaux, d’une part, au moment de l’étude du bilan des sources d’incertitudes et, d’autre part, au moment de la détermination de l’incertitude élargie.
Pour chaque composante, on réalise une étude soit de type A soit de type B.
Pour le type B, le problème est particulièrement clair. On qualifie une dispersion. Faisons l’hypothèse d’une loi de densité de probabilité uniforme, on passe à une variance en divisant la dispersion par . Cette division par est rigoureuse, le problème n’est pas là. Imaginons une dispersion uniforme de ± 1 soit un intervalle (une dispersion) de 2. On calculera un écart type de . Si on compare la densité de probabilité uniforme et la densité de probabilité gaussienne équivalente (figure 2), on voit que le choix de la densité de probabilité n’est pas négligeable. Le fait de ne propager que des variances fait perdre cette information, il est donc impossible d’évaluer l’impact de ce choix sur la distribution finale. Ceci étant, en pratique, supposons que l’on considère la somme de trois variables aléatoires de densité de probabilité uniforme entre − 1 et 1, la somme présente un écart type égal à 1 (à 10−4 obtenu par simulation numérique). Si on remplace les trois lois uniformes par des gaussiennes d’écart type
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Limites de la méthode analytique
BIBLIOGRAPHIE
-
(1) - MULLER (J.W.) - Some second thoughts on error statements, Nuclear Instruments and Methods - Volume 163, Issue 1, Pages 241-251 (1 July 1979).
-
(2) - DOORNIK (J.A.) - * - . – An Improved Ziggurat Method to Generate Normal Random Samples (2005).
-
(3) - BATISTA (E.), PINTO (L.), FILIPE (E.), VAN DER VEEN (A.M.H.) - « Calibration of micropipettes : Test methods and uncertainty analysis » - Measurement, 40, 338-342 (2007).
-
(4) - HENNEBELLE (F.) - « Détermination des incertitudes de mesures sur Machines à Mesurer Tridimensionnelles – Application aux engrenages » - Thèse Arts et Métiers ParisTech – 2007 ENAM 0035, Paris, France, Pastel (5 Décembre 2007).
-
(5) - COOREVITS (T.), HENNEBELLE (F.), SESSA (P.), ROUSSET (N.) - « Accreditation process in gear metrology to standardized measurands on Coordinate Measuring Machine » - Proceeding – International Congress of Metrology, Paris, France (25 June 2009).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Mathematica®, Wolfram Mathematica : http://www.wolfram.com/mathematica et distribué par Ritme, http://www.ritme.com/fr/training/mathematica
Crystal Ball, ORACLE® :
http://www.oracle.com/fr/products/applications/crystalball
GUM Workbench, Metrodata GmbH :
NPLUnc, NPL :
QMSys Uncertainty Workshop :
http://qmsys-uncertainty-workshop.soft112.com
MUSE :
http://sourceforge.net/p/freemuse
R :
MATLAB :
http://www.mathworks.fr/products/matlab
HAUT DE PAGE
JCGM 100:2008(F), Évaluation des données de mesure –...
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive