Article de référence | Réf : S7620 v1

Supervision homme-machine

Auteur(s) : Jacky MONTMAIN

Date de publication : 10 mars 2005

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Jacky MONTMAIN : Ingénieur du Commissariat à l’Énergie Atomique Unité Mixte de Recherche sur la Complexité, École des Mines d’Alès – Commissariat à l’Énergie Atomique

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La complexité des systèmes dans lesquels l’homme est impliqué aujourd’hui conduit à l’émergence de systèmes de traitement de l’information de plus en plus sophistiqués et incontournables où la prise de décision est de plus en plus difficile. La supervision homme-machine des systèmes de production s’inscrit typiquement dans cette problématique.

Les définitions de la supervision, fournies par les dictionnaires sont les suivantes : « surveiller et contrôler l’exécution d’une opération ou la réalisation d’un travail accompli par d’autres » (Larousse) ; « contrôler sans entrer dans les détails » (Robert). Les deux notions de « surveiller et contrôler l’exécution d’une opération » et « sans entrer dans les détails » sont déterminantes pour comprendre les orientations relatées dans cet article.

Le rôle de l’opérateur a évolué de la conduite à la supervision et l’outil de production est devenu indissociable de son système numérique de contrôle-commande rendant la compréhension des événements d’autant plus complexe. L’intégration d’indicateurs de contrôle de plus en plus nombreux et sophistiqués dans le poste de conduite ne correspond pas nécessairement aux attentes de l’équipe d’exploitation. Il est préférable d’élaborer des systèmes d’information coopératifs, véritables aides au raisonnement et à la compréhension de situations pour les opérateurs. L’enjeu ne doit pas être l’automatisation des tâches cognitives de ceux-ci mais l’aide au raisonnement. La supervision ne saurait se résumer à la surveillance d’un procédé physique, l’objet de son analyse est une installation complète avec son instrumentation, ses modes de fonctionnement, ses configurations..., conduite par une équipe d’opérateurs d’exploitation.

L’un des challenges des systèmes d’information interactifs réside alors dans la sélection, l’organisation et la présentation dynamique de l’information ; la performance de l’ensemble homme-machine dépend de l’efficacité de la communication établie par l’interface (au sens large du terme). La conception de systèmes coopératifs repose sur l’analyse du système homme-machine afin d’établir les besoins informationnels, de définir les objectifs, les contraintes et les tâches à remplir.

Nous verrons dans cet article les principes et les spécificités de la supervision homme-machine. Nous opposerons la notion d’automatisation cognitive à celle d’aide au raisonnement. Cela nous amènera à discuter des modèles cognitifs utiles à l’opérateur en salle de conduite. Nous nous attarderons à cet effet sur le raisonnement qualitatif, le raisonnement causal, le raisonnement multipoints de vue et le raisonnement approché.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-s7620


Cet article fait partie de l’offre

Automatique et ingénierie système

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ALLEN (J.F.) -   Maintaining knowledge about temporal intervals  -  . Communications of the ACM, p. 832-843 (1983).

  • (2) - BAINBRIDGE (L.) -   Ironies of automation  -  . Automatica, 19 (6), p. 775-779 (1983).

  • (3) - BANDEKAR (V.) -   Causal models for diagnostic reasoning  -  . Artificial Intelligence in Engineering, 4 (2) (1989).

  • (4) - BENKHANNOUCHE (S.) -   Aide à la supervision des processus industriels : vers une méthodologie de conception  -  . Thèse de l’Université Pierre et Marie Curie de Paris 13 (1996).

  • (5) - BOBROW (D.G.) -   Qualitative reasoning about physical systems : an introduction  -  . Artificial Intelligence, 24, p. 1-5 (1984).

  • (6) - BRUNET (J.), JAUME (D.), LABARRÈRE (M.), RAULT (A.), VERGÉ (M.) -   Détection et diagnostic de pannes, approche par modélisation  -  ....

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS