Présentation
EnglishAuteur(s)
-
Jacky MONTMAIN : Ingénieur du Commissariat à l’Énergie Atomique Unité Mixte de Recherche sur la Complexité, École des Mines d’Alès – Commissariat à l’Énergie Atomique
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La complexité des systèmes dans lesquels l’homme est impliqué aujourd’hui conduit à l’émergence de systèmes de traitement de l’information de plus en plus sophistiqués et incontournables où la prise de décision est de plus en plus difficile. La supervision homme-machine des systèmes de production s’inscrit typiquement dans cette problématique.
Les définitions de la supervision, fournies par les dictionnaires sont les suivantes : « surveiller et contrôler l’exécution d’une opération ou la réalisation d’un travail accompli par d’autres » (Larousse) ; « contrôler sans entrer dans les détails » (Robert). Les deux notions de « surveiller et contrôler l’exécution d’une opération » et « sans entrer dans les détails » sont déterminantes pour comprendre les orientations relatées dans cet article.
Le rôle de l’opérateur a évolué de la conduite à la supervision et l’outil de production est devenu indissociable de son système numérique de contrôle-commande rendant la compréhension des événements d’autant plus complexe. L’intégration d’indicateurs de contrôle de plus en plus nombreux et sophistiqués dans le poste de conduite ne correspond pas nécessairement aux attentes de l’équipe d’exploitation. Il est préférable d’élaborer des systèmes d’information coopératifs, véritables aides au raisonnement et à la compréhension de situations pour les opérateurs. L’enjeu ne doit pas être l’automatisation des tâches cognitives de ceux-ci mais l’aide au raisonnement. La supervision ne saurait se résumer à la surveillance d’un procédé physique, l’objet de son analyse est une installation complète avec son instrumentation, ses modes de fonctionnement, ses configurations…, conduite par une équipe d’opérateurs d’exploitation.
L’un des challenges des systèmes d’information interactifs réside alors dans la sélection, l’organisation et la présentation dynamique de l’information ; la performance de l’ensemble homme-machine dépend de l’efficacité de la communication établie par l’interface (au sens large du terme). La conception de systèmes coopératifs repose sur l’analyse du système homme-machine afin d’établir les besoins informationnels, de définir les objectifs, les contraintes et les tâches à remplir.
Nous verrons dans cet article les principes et les spécificités de la supervision homme-machine. Nous opposerons la notion d’automatisation cognitive à celle d’aide au raisonnement. Cela nous amènera à discuter des modèles cognitifs utiles à l’opérateur en salle de conduite. Nous nous attarderons à cet effet sur le raisonnement qualitatif, le raisonnement causal, le raisonnement multipoints de vue et le raisonnement approché.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Principe
1.1 Rôle de l’opérateur en salle de conduite
L’opérateur de conduite a un rôle essentiel comme superviseur au sein du processus de fabrication : il effectue un certain nombre de tâches fortement dépendantes du contexte, donc difficilement automatisables, qui nécessitent de sa part une activité constante de surveillance du processus et de son système numérique de contrôle-commande (SNCC) [54] ; il peut être amené à diagnostiquer un dysfonctionnement et à agir en conséquence sur le processus. Il est donc considéré comme une composante d’adaptation du SNCC, face aux changements de mode de marche, aux perturbations extérieures, et aux événements nouveaux. Il reste l’ultime maillon de la chaîne décisionnelle.
De façon pratique, l’opérateur est chargé :
-
d’exécuter des procédures ;
-
d’ajuster les paramètres de fonctionnement ;
-
d’adapter le fonctionnement du processus en fonction de contraintes de production ;
-
d’anticiper les actions à envisager, en fonction des délais de production ;
-
de participer à un objectif commun.
Trois dimensions peuvent être distinguées dans ces activités :
-
la dimension opératoire, qui tient compte des actions, des procédures, des tâches réalisées ;
-
la dimension cognitive, qui regroupe les aspects ajustement, adaptation et anticipation ;
-
la dimension collective ou sociale, qui tient compte des problèmes de coordination entre opérateurs.
1.2 Opérateur et automatisation
-
L’automatisation intégrée est un concept déjà ancien qui recouvre l’exécution automatique des opérations de surveillance et de commande d’un procédé complexe [21]. Vers la fin des années 1980, l’automatisation intégrée s’intéresse à la prise en compte des opérateurs humains dans la conception de l’automatisation de l’installation. L’idée d’assimiler la dimension humaine dans le système informatique nécessite d’intégrer un niveau de complexité supplémentaire...
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Principe
BIBLIOGRAPHIE
-
(1) - ALLEN (J.F.) - Maintaining knowledge about temporal intervals - . Communications of the ACM, p. 832-843 (1983).
-
(2) - BAINBRIDGE (L.) - Ironies of automation - . Automatica, 19 (6), p. 775-779 (1983).
-
(3) - BANDEKAR (V.) - Causal models for diagnostic reasoning - . Artificial Intelligence in Engineering, 4 (2) (1989).
-
(4) - BENKHANNOUCHE (S.) - Aide à la supervision des processus industriels : vers une méthodologie de conception - . Thèse de l’Université Pierre et Marie Curie de Paris 13 (1996).
-
(5) - BOBROW (D.G.) - Qualitative reasoning about physical systems : an introduction - . Artificial Intelligence, 24, p. 1-5 (1984).
-
(6) - BRUNET (J.), JAUME (D.), LABARRÈRE (M.), RAULT (A.), VERGÉ (M.) - Détection et diagnostic de pannes, approche par modélisation - ....
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive