Présentation
RÉSUMÉ
Cet article traite du vieillissement des accumulateurs lithium-ion, une technologie clé dans de nombreux secteurs, tels que la mobilité électrique et le stockage d’énergie. Il explore les mécanismes électrochimiques responsables de leur dégradation, comme la croissance de l’interphase d’électrolyte solide (SEI) et la détérioration des matériaux d’électrode. Les facteurs externes, comme la température ou le régime de courant, et internes, tels que les additifs électrolytiques, sont également analysés.
Enfin, l’article examine les modélisations permettant de prédire ce vieillissement et aborde les perspectives d’évolution technologique pour améliorer la durabilité des batteries.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Mikaël CUGNET : Ingénieur chercheur et expert senior batteries - Université Grenoble Alpes, CEA, Liten, Le Bourget-du-Lac, France
INTRODUCTION
Les accumulateurs lithium-ion, devenus indispensables dans les secteurs de l’électronique, du stockage stationnaire et de la mobilité électrique, sont aujourd’hui au cœur de l’innovation technologique. Cependant, malgré leur adoption massive, ils sont confrontés à une problématique majeure : le vieillissement. Ce phénomène, qui résulte de l’usure progressive des composants internes, a un impact direct sur leurs performances, notamment en termes de capacité, de durée de vie et de sécurité. L’objectif de cet article est d’analyser les mécanismes responsables de ce vieillissement et d’explorer les pistes d’amélioration.
Le vieillissement des accumulateurs lithium-ion peut être appréhendé sous différents angles : du simple usage quotidien des dispositifs électroniques, à la dégradation sous l’effet des conditions extrêmes dans les véhicules électriques ou les systèmes de stockage d’énergie renouvelable. Ce phénomène pose plusieurs défis techniques et économiques : d’une part, la nécessité d’améliorer la durée de vie des batteries pour répondre aux besoins croissants en mobilité électrique, et d’autre part, le besoin de maîtriser ces processus de dégradation pour optimiser la performance et minimiser l’impact environnemental de ces dispositifs.
Les accumulateurs lithium-ion reposent sur des principes électrochimiques complexes, qui engendrent des phénomènes de dégradation divers au niveau des matériaux d’électrode, des électrolytes et des interfaces. L’article explore en profondeur ces phénomènes de vieillissement, qu’ils soient calendaires (liés à l’âge) ou en cyclage (liés à l’application). Une attention particulière est portée aux facteurs externes influençant ce processus, tels que la température, le régime de courant, la profondeur de décharge et internes, tels que les additifs présents dans l’électrolyte, les collecteurs de courant ou encore la gestion thermique. De plus, des mécanismes comme la croissance de l’interphase d’électrolyte solide (SEI) et le dépôt de lithium métallique sont analysés dans le cadre de modèles électrochimiques avancés.
En parallèle, cet article examine les différents modèles permettant de simuler et de prévoir le vieillissement des accumulateurs. Ces modèles, qu’ils soient fondés sur des approches empiriques ou électrochimiques, sont essentiels pour anticiper les performances à long terme des batteries et ajuster les paramètres de conception en conséquence. Une modélisation précise des réactions aux électrodes ainsi que l’analyse des gradients de concentration et des potentiels électriques permettent de mieux comprendre les facteurs limitants et d’orienter les développements futurs.
Ainsi, cet article propose une analyse approfondie des problématiques liées au vieillissement des batteries lithium-ion, tout en fournissant des pistes de réflexion sur les solutions possibles. Face aux défis de la transition énergétique et à la demande croissante en systèmes de stockage d’énergie fiables, il est primordial de continuer à innover dans le domaine des accumulateurs pour allonger leur durée de vie, améliorer leur sécurité et réduire leur empreinte écologique.
MOTS-CLÉS
modélisation 3D vieillissement électrolyte électrode accumulateurs lithium-ion additifs électrolythiques
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Ingénierie des transports > Véhicule et mobilité du futur > Motorisations thermiques, hybrides et électriques > Vieillissement des accumulateurs lithium-ion > Conclusion
Accueil > Ressources documentaires > Énergies > Conversion de l'énergie électrique > Accumulateurs d'énergie > Vieillissement des accumulateurs lithium-ion > Conclusion
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Conclusion
Le vieillissement des accumulateurs lithium-ion reste un défi technique central pour de nombreuses industries, notamment dans les secteurs de la mobilité électrique, du stockage d’énergie renouvelable, et de l’électronique grand public. Bien que ces batteries aient révolutionné notre manière de consommer et de stocker l’énergie, les limitations liées à leur dégradation progressive continuent de freiner leur utilisation à grande échelle. Les mécanismes électrochimiques qui en sont responsables, comme la croissance de la SEI, la dégradation des matériaux d’électrode ou le dépôt de lithium métallique, soulignent la complexité de cette problématique.
Cependant, l’avenir des accumulateurs lithium-ion est marqué par une dynamique d’innovation constante. Les chercheurs continuent d’explorer de nouvelles approches pour améliorer la longévité des batteries, réduire leur impact environnemental et optimiser leur performance. Des solutions telles que l’amélioration des électrodes par l’utilisation de nouveaux matériaux, le développement d’additifs électrolytiques plus stables, ainsi que l’introduction de systèmes de gestion thermique plus efficaces, sont déjà en cours de développement.
En parallèle, de nouvelles technologies de batterie émergent, telles que les accumulateurs tout solide, les batteries lithium-soufre ou encore les systèmes basés sur des matériaux abondants et plus écologiques. Ces innovations pourraient à terme repousser les limites actuelles en matière de densité énergétique, de sécurité et de durabilité. Ces évolutions pourraient non seulement prolonger la durée de vie des batteries, mais aussi renforcer leur compatibilité avec les besoins croissants en énergie propre et en mobilité durable.
Le développement de modèles de vieillissement de plus en plus précis, en corrélation avec des essais expérimentaux, offre également des perspectives prometteuses pour anticiper et prévenir la dégradation des accumulateurs. Grâce à ces avancées, il est envisageable de concevoir des batteries plus robustes, plus sûres et plus respectueuses de l’environnement.
Ainsi, sans prédire de délais spécifiques, il est clair que l’optimisation des accumulateurs lithium-ion et l’émergence de nouvelles générations de batteries joueront un rôle clé dans la transition énergétique mondiale. Ces technologies...
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - GALUSHKIN (N. E.), YAZVINSKAYA (N.N.), GALUSHKIN (D.N.) - A critical review of using the Peukert equation and its generalizations for lithium-ion cells. - Dans J. Electrochem. Soc., 167(12), 120516 (2020).
-
(2) - BESSLER (W.G.) - Capacity and resistance diagnosis of batteries with voltage-controlled models. - Dans J. Electrochem. Soc., 171(8), 080510 (2024).
-
(3) - WALDMANN (T.), WILKA (M.), KASPER (M.), FLEISCHHAMMER (M.), WOHLFAHRT-MEHRENS (M.) - Temperature dependent ageing mechanisms in lithium-ion batteries – a post-mortem study. - Dans J. Power Sources, vol. 262, pp. 129-135 (2014).
-
(4) - DELAILLE (A.), GROLLEAU (S.), DUCLAUD (F.), BERNARD (J.), REVEL (R.), PÉLISSIER (S.), REDONDO-IGLESIAS (E.), VINASSA (J.-M.), EDDAHECH (A.), FORGEZ (C.), KASSEM (M.), JOLY (S.), PORCELLATO (D.), GYAN (P.), BOURLOT (S.), OUATTARA-BRIGAUDET (M.) - SIMCAL Project: calendar aging results obtained on a panel of 6 commercial Li-ion cells . - Dans Proc. 224th Electrochemical Society Meeting (2013).
-
(5) - MATSUSHIMA (T.) - Deterioration estimation of lithium-ion cells in direct current...
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive