Présentation

Article

1 - CONTEXTE ET DÉFINITIONS

  • 1.1 - Contexte
  • 1.2 - Définitions

2 - PHÉNOMÈNES DE VIEILLISSEMENT

3 - MODÉLISATION DU VIEILLISSEMENT

4 - CONCLUSION

5 - GLOSSAIRE

6 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : D7000 v1

Phénomènes de vieillissement
Vieillissement des accumulateurs lithium-ion

Auteur(s) : Mikaël CUGNET

Date de publication : 10 déc. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Cet article traite du vieillissement des accumulateurs lithium-ion, une technologie clé dans de nombreux secteurs, tels que la mobilité électrique et le stockage d’énergie. Il explore les mécanismes électrochimiques responsables de leur dégradation, comme la croissance de l’interphase d’électrolyte solide (SEI) et la détérioration des matériaux d’électrode. Les facteurs externes, comme la température ou le régime de courant, et internes, tels que les additifs électrolytiques, sont également analysés.

Enfin, l’article examine les modélisations permettant de prédire ce vieillissement et aborde les perspectives d’évolution technologique pour améliorer la durabilité des batteries.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Mikaël CUGNET : Ingénieur chercheur et expert senior batteries - Université Grenoble Alpes, CEA, Liten, Le Bourget-du-Lac, France

INTRODUCTION

Les accumulateurs lithium-ion, devenus indispensables dans les secteurs de l’électronique, du stockage stationnaire et de la mobilité électrique, sont aujourd’hui au cœur de l’innovation technologique. Cependant, malgré leur adoption massive, ils sont confrontés à une problématique majeure : le vieillissement. Ce phénomène, qui résulte de l’usure progressive des composants internes, a un impact direct sur leurs performances, notamment en termes de capacité, de durée de vie et de sécurité. L’objectif de cet article est d’analyser les mécanismes responsables de ce vieillissement et d’explorer les pistes d’amélioration.

Le vieillissement des accumulateurs lithium-ion peut être appréhendé sous différents angles : du simple usage quotidien des dispositifs électroniques, à la dégradation sous l’effet des conditions extrêmes dans les véhicules électriques ou les systèmes de stockage d’énergie renouvelable. Ce phénomène pose plusieurs défis techniques et économiques : d’une part, la nécessité d’améliorer la durée de vie des batteries pour répondre aux besoins croissants en mobilité électrique, et d’autre part, le besoin de maîtriser ces processus de dégradation pour optimiser la performance et minimiser l’impact environnemental de ces dispositifs.

Les accumulateurs lithium-ion reposent sur des principes électrochimiques complexes, qui engendrent des phénomènes de dégradation divers au niveau des matériaux d’électrode, des électrolytes et des interfaces. L’article explore en profondeur ces phénomènes de vieillissement, qu’ils soient calendaires (liés à l’âge) ou en cyclage (liés à l’application). Une attention particulière est portée aux facteurs externes influençant ce processus, tels que la température, le régime de courant, la profondeur de décharge et internes, tels que les additifs présents dans l’électrolyte, les collecteurs de courant ou encore la gestion thermique. De plus, des mécanismes comme la croissance de l’interphase d’électrolyte solide (SEI) et le dépôt de lithium métallique sont analysés dans le cadre de modèles électrochimiques avancés.

En parallèle, cet article examine les différents modèles permettant de simuler et de prévoir le vieillissement des accumulateurs. Ces modèles, qu’ils soient fondés sur des approches empiriques ou électrochimiques, sont essentiels pour anticiper les performances à long terme des batteries et ajuster les paramètres de conception en conséquence. Une modélisation précise des réactions aux électrodes ainsi que l’analyse des gradients de concentration et des potentiels électriques permettent de mieux comprendre les facteurs limitants et d’orienter les développements futurs.

Ainsi, cet article propose une analyse approfondie des problématiques liées au vieillissement des batteries lithium-ion, tout en fournissant des pistes de réflexion sur les solutions possibles. Face aux défis de la transition énergétique et à la demande croissante en systèmes de stockage d’énergie fiables, il est primordial de continuer à innover dans le domaine des accumulateurs pour allonger leur durée de vie, améliorer leur sécurité et réduire leur empreinte écologique.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d7000


Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

2. Phénomènes de vieillissement

2.1 Modes de vieillissement

Dans les applications du transport (routier, ferroviaire, etc.), le vieillissement des batteries va dépendre du lieu (température, déclivité moyenne, etc.), du type d’usage (très séquentiel à basse vitesse, régulier à vitesse moyenne, etc.), du type de conduite (nerveuse ou calme) et des habitudes du conducteur (recharges fréquentes ou non, charges rapides ou non, etc.), indépendamment du BMS qui a lui-même une grande influence sur le vieillissement.

Dans les applications stationnaires, le vieillissement des batteries va dépendre du lieu (température, humidité, etc.), des services assurés par ces dernières pour le réseau électrique (optimisation du profil de production, stabilité de la fréquence, sécurité d’approvisionnement, etc.), du BMS et de la gestion de l’énergie du système de stockage tout entier, ou EMS (Energy Management System en anglais).

On distingue trois modes de vieillissement des batteries induisant des conséquences du même type. Ils sont essentiellement caractérisés par une baisse progressive de la capacité de la batterie et une augmentation de sa résistance apparente (ou de son impédance suivant la technique de mesure utilisée). En termes de performances, cela conduit à une diminution de la réserve d’énergie disponible et de la puissance à laquelle celle-ci peut être délivrée.

HAUT DE PAGE

2.1.1 Vieillissement en stockage ou calendaire

Le vieillissement en stockage ou calendaire affecte la batterie lorsqu’elle est au repos. Dans l’automobile, ce mode de vieillissement est qualifié de mode « parking ». Il faut alors faire attention à ne pas confondre ce type de vieillissement (irréversible) avec le phénomène d’autodécharge (réversible, cf. figure 1). Les caractéristiques de ce mode de vieillissement dépendent de deux facteurs, la température de stockage et le SOC de la batterie. Plus la température de stockage est élevée, plus le vieillissement calendaire s’accélère....

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Phénomènes de vieillissement
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GALUSHKIN (N. E.), YAZVINSKAYA (N.N.), GALUSHKIN (D.N.) -   A critical review of using the Peukert equation and its generalizations for lithium-ion cells.  -  Dans J. Electrochem. Soc., 167(12), 120516 (2020).

  • (2) - BESSLER (W.G.) -   Capacity and resistance diagnosis of batteries with voltage-controlled models.  -  Dans J. Electrochem. Soc., 171(8), 080510 (2024).

  • (3) - WALDMANN (T.), WILKA (M.), KASPER (M.), FLEISCHHAMMER (M.), WOHLFAHRT-MEHRENS (M.) -   Temperature dependent ageing mechanisms in lithium-ion batteries – a post-mortem study.  -  Dans J. Power Sources, vol. 262, pp. 129-135 (2014).

  • (4) - DELAILLE (A.), GROLLEAU (S.), DUCLAUD (F.), BERNARD (J.), REVEL (R.), PÉLISSIER (S.), REDONDO-IGLESIAS (E.), VINASSA (J.-M.), EDDAHECH (A.), FORGEZ (C.), KASSEM (M.), JOLY (S.), PORCELLATO (D.), GYAN (P.), BOURLOT (S.), OUATTARA-BRIGAUDET (M.) -   SIMCAL Project: calendar aging results obtained on a panel of 6 commercial Li-ion cells .  -  Dans Proc. 224th Electrochemical Society Meeting (2013).

  • (5) - MATSUSHIMA (T.) -   Deterioration estimation of lithium-ion cells in direct current...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS