Présentation

Article interactif

1 - CYCLES THÉORIQUES

2 - EXPÉRIMENTATION ET PERFORMANCES

3 - MODÉLISATION

4 - SIMULATION DES CYCLES. MODÉLISATION À UNE SEULE ZONE

5 - SIMULATION DES CYCLES. MODÉLISATION À DEUX ZONES

6 - CONCLUSION

Article de référence | Réf : BM2510 v1

Simulation des cycles. Modélisation à deux zones
Modélisation du cycle moteur - Approche zérodimensionnelle

Auteur(s) : Philippe GUIBERT

Relu et validé le 17 déc. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Le moteur à combustion interne a toujours fasciné bon nombre de nos contemporains. D’une part, il joue un rôle prépondérant dans le domaine des propulsions et de la transformation d’énergie, d’autre part il engendre un constant intérêt scientifique. En effet, beaucoup de phénomènes y sont impliqués, ce qui oblige le concepteur ou bien le chercheur à maîtriser un grand nombre de disciplines.

RESUME FRANçAIS 2013-04-19

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Philippe GUIBERT : Professeur de l’Université Pierre-et-Marie-Curie - Laboratoire de mécanique physique - UMR 7068 - Université Pierre-et-Marie-Curie

INTRODUCTION

Le moteur à combustion interne a toujours fasciné bon nombre de nos contemporains. D’une part, il joue un rôle prépondérant dans le domaine des propulsions et de la transformation d’énergie, d’autre part il engendre un constant intérêt scientifique. En effet, beaucoup de phénomènes y sont impliqués, ce qui oblige le concepteur ou bien le chercheur à maîtriser un grand nombre de disciplines.

L’objectif de cet exposé est de fournir l’état de l’art le plus exhaustif possible des modèles mathématiques utilisés pour l’analyse des cycles des moteurs à combustion interne tout en ciblant l’approche par des modèles basés sur « les cycles enveloppes » ou bien par une approche zérodimensionnelle. La présentation prendra comme support d’exemple le moteur à allumage commandé [AC ou bien SI (Spark Ignition)]. Les moteurs à allumage par compression [Diesel, D ou bien CI (Compression Ignition)] ainsi que d’autres applications comme les moteurs utilisant la combustion par auto-inflammation homogène ne seront qu’évoqués et feront l’objet d’un article ultérieur.

Les modèles mathématiques peuvent être classés dans deux grands groupes : les modèles dimensionnels et les modèles thermodynamiques (nommés aussi zérodimensionnels). Une sous-famille de modèles va se distinguer par le choix du nombre de dimension (1D – 3D) pour les modèles dimensionnels ou bien par le nombre de zones où sera appliqué le modèle thermodynamique.

Les modèles zérodimensionnels permettent une approche simplifiée des différents phénomènes intervenant au cours de la combustion dans le cylindre. En effet, ils ne font intervenir aucune grandeur liée à l'espace, donc à la propagation (dans certains cas, il pourra être introduit indirectement des grandeurs en fonction des variables d’espace). Ce type de modèle permet de considérer uniquement l'évolution des variables thermodynamiques dans le temps. Dans le cadre de la modélisation zérodimensionnelle, qui fera l’objet de cet article, le choix d’une seule zone impose comme hypothèse d’avoir l’ensemble des grandeurs thermodynamiques (pression, température, concentration…) uniformes. En augmentant le nombre de zones, il pourra être précisé dans chacune certaines conditions d’évolution ou d’initialisation. Les résultats pourront alors être affinés. Par exemple, dans le cas de deux zones, le contenu du cylindre peut être assimilé à deux espèces de composition correspondant respectivement à celles des gaz brûlés et imbrûlés. La progression de la combustion s’opère par front de flamme. La réaction chimique d’oxydation a lieu dans un volume négligeable (front de flamme) devant les volumes des deux zones. Le front de flamme est considéré comme une discontinuité entre les gaz frais et les gaz brûlés.

La multiplicité du nombre de zones ne permettra en aucun cas d’atteindre les résultats obtenus par les modèles dimensionnels, car les modèles thermodynamiques ne prennent pas en compte les effets de transfert convectif et de diffusion. Les équations régissant les modèles 0D sont le premier principe appliqué en système ouvert (conservation de l’énergie), l’équation des gaz parfaits, la conservation de la masse, l’évolution des volumes et différents sous-modèles permettant la résolution du cycle (sous-modèles de combustion, de transfert thermique, de transfert de masse pendant les phases ouvertes de la chambre de combustion, de formation de polluant, de turbulence…). Cette modélisation permet des temps de calcul réduits et une mise en œuvre aisée. La solution du problème consiste à résoudre un système de n équations différentielles du premier ordre. Le choix des sous-modèles conditionne la pertinence des résultats. En effet, les sous-modèles relatifs à la loi de combustion sont proposés soit sous forme d’une loi phénoménologique, soit en tenant compte de la physique du processus de propagation du front de flamme. Dans ce cas, le choix d’une géométrie de propagation (cylindrique ou bien sphérique) s’impose. La vitesse turbulente de flamme est écrite comme une fonction de la vitesse de propagation laminaire de flamme et du niveau de turbulence dans la chambre. La turbulence ainsi que les échelles associées utilisées dans les corrélations de vitesse turbulente de flamme peuvent être obtenues en introduisant un modèle turbulent (par exemple de type «  kε »). Cependant, il est très difficile de rester pertinent lorsque l’on cherche à avoir un niveau de turbulence de distribution non uniforme dans la chambre de combustion.

Le bon déroulement des phases fermées (compression, combustion, détente) du cycle est conditionné par de bonnes conditions aux limites sur les masses des différentes espèces à la fermeture des soupapes d’admission. Les sous-modèles de transfert de masse d’admission mais aussi ceux d’évacuation des produits brûlés font intervenir des notions comme le rendement de remplissage, la perméabilité, grandeurs fortement fonctions des conditions expérimentales telles que régime de rotation, diagramme de distribution des ouvertures et des fermetures des soupapes d’admission et d’échappement ainsi que du contexte géométrique du moteur (tubulure d’admission, culasse, siège de soupape, diamètres de soupape …).

Pendant le processus de combustion s’opèrent des transferts de chaleur sur les parois de la chambre ou du piston. Ce phénomène est indispensable pour la tenue mécanique et thermique des matériaux constituant la chambre de combustion. Les sous-modèles doivent être convaincants car les valeurs obtenues sont du même ordre de grandeur que les termes de pertes thermiques à l’échappement et du travail indiqué.

En première conclusion, il est important de souligner que l’objectif dans l’utilisation de modèles 0D est d’avoir un outil prédictif permettant aussi la prospection de plages non explorées expérimentalement.

Nota :

Les articles [BM 2 510] et vont s’attacher à fournir une synthèse des approches possibles de la modélisation zérodimensionnelle en indiquant plus particulièrement les modèles et sous-modèles les plus pertinents.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm2510


Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

5. Simulation des cycles. Modélisation à deux zones

La modélisation multizone peut tenir compte des spécificités de la combustion (progression, propagation de front de flamme, combustion par diffusion) ; dans certains cas, elle peut tenir compte de la géométrie de la chambre de combustion et elle permet de préciser, pour les différentes zones, une composition spécifique. Notre exposé se focalisera sur le cas de deux zones (figure 18) ; l’extension à un nombre de zones supérieur ne pose en théorie aucune difficulté, il conviendra d’adapter certains sous-modèles. Le cas de deux zones se justifie pour une application de simulation de cycle de moteur à allumage commandé à charge homogène. Il sera distingué une zone où il n’y aura que des gaz frais et une autre zone ne contenant que des gaz brûlés. La surface de séparation représente assez bien une zone de progression du front de flamme de prémélange. Dans chaque zone sont considérés une température, un volume et une composition particulière. La pression est, quant à elle, uniforme dans toute la chambre.

Nous verrons dans un premier paragraphe les phases fermées de la chambre de combustion. Les sous-modèles associés seront traités dans l’article . Dans un second paragraphe, la modélisation des phases ouvertes du cycle (transfert de masse pendant l’admission et l’échappement) sera développée.

5.1 Modélisation de la phase de combustion

Un ensemble d’hypothèses de travail doit être décrit et rappelé afin de prendre la mesure des limites de la modélisation.

Les deux masses de gaz sont supposées homogènes en température et composition. L’hypothèse de température uniforme dans la zone de gaz frais est raisonnable ; par contre, il existe des gradients de température significatifs dans la zone des gaz brûlés provenant des masses de gaz qui sont successivement brûlées entre le début et la fin de la combustion.

Les gaz sont considérés comme un mélange de gaz parfaits. Leurs propriétés thermodynamiques (enthalpie, énergie interne, capacités thermiques massiques, masse molaire…) sont calculées suivant les lois de mélange de gaz parfaits. La pression est considérée comme uniforme pour les deux masses de gaz.

Les gaz frais ont une composition constante pendant la compression (oxygène, azote et argon, carburant CxHy , gaz d'échappement...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Simulation des cycles. Modélisation à deux zones
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS