Présentation
EnglishRÉSUMÉ
Cet article revient sur la cristallisation de fibres monocristallines à partir de l’état liquide par le procédé micro-pulling down (µ-PD). Les avancées technologiques récentes dans l’ingénierie des procédés, la maîtrise et le contrôle de la cinétique de cristallisation par la technique µ-PD ont permis d’obtenir d’énormes progrès dans la croissance de fibres monocristallines performantes sur mesure pour un large domaine d’applications, en particulier les lasers et les scintillateurs. La croissance de fibres monocristallines de grenats pour des applications lasers et scintillation, ainsi que de saphir pour la détection des ondes gravitationnelles est détaillée et discutée dans cet article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Kheirreddine LEBBOU : Directeur de recherche au CNRS, - Institut Lumière Matière (ILM), UMR 5306 CNRS, Lyon, France
INTRODUCTION
L'ingénierie moderne utilise des composants fabriqués à partir de cristaux de géométrie contrôlée, principalement sous la forme de plaques, fibres ou tubes, bien que parfois les formes soient beaucoup plus compliquées. Les cristaux de formats et de tailles spécifiques exempts de défauts et d’impuretés sont donc souhaitables ; ils peuvent être utilisés comme produits finaux avec un usinage supplémentaire minimal. Les procédés de croissance cristalline de cristaux massifs (lingots) nécessitent des creusets de cristallisation de dimensions très importantes, de l’ordre de quelques litres, ce qui présente un inconvénient majeur, ces conteneurs constitués de métaux rares tels l’iridium étant coûteux. En plus, de tels creusets possèdent une durée de vie limitée à quelques tirages, du fait de la dégradation chimique à laquelle ils sont soumis, ce qui augmente d’une façon importante le coût de la cristallisation des monocristaux. À partir de 2010, en raison de leurs caractéristiques remarquables dans le domaine des lasers et des scintillateurs, les fibres monocristallines ont fait l'objet d'intenses études. Le développement des guides d'ondes optiques a activé la croissance de fibres monocristallines pour des applications diversifiées.
Le développement de fibres monocristallines est motivé par des applications en optique qui ne sont accessibles ni aux fibres de verres, ni aux formes monocristallines massives. Le monocristal sous forme fibrée permet d'augmenter l’efficacité d’interaction entre le faisceau et le matériau. Pour des utilisations lasers, la configuration fibrée présente également d’autres avantages notamment une dissipation efficace de la chaleur emmagasinée dans le matériau grâce aux faibles distances entre la zone de pompage et le milieu thermostatique extérieur. De plus, en utilisant une grande longueur d’interaction, la concentration en cations activateurs (Nd3+, Yb3+…) peut être diminuée. Ces deux facteurs concourent à minimiser l'échauffement du matériau, ce qui est favorable pour les applications laser de forte puissance. Notons qu’une faible concentration en cations actifs permet également de minimiser les phénomènes de désexcitations non radiatives (extinction de l’émission de lumière par transfert d’énergie entre les ions). De plus, l’efficacité des oscillations lasers dans un réseau hôte monocristallin est souvent beaucoup plus grande que dans un réseau vitreux, car dans ce cas le désordre structural du matériau diminue les sections efficaces d’émission stimulée et la conductivité thermique est moindre. La faible dimension des fibres monocristallines minimise également la présence de défauts responsables de la faible résistance mécanique des matériaux massifs. D'autre part, les fibres monocristallines peuvent être utilisées pour les interactions du second ordre comme la génération d'harmonique, le mélange de fréquences, l’oscillation paramétrique et la modulation électro-optique.
Dans le domaine des scintillateurs, les fibres monocristallines sont de sérieuses candidates pour le développement de nouvelles générations de calorimètres à scintillation pour la physique des hautes énergies. Depuis 2005, l’ILM (Institut Lumière Matière) (ex LPCML) a fortement contribué au développement des fibres scintillantes à base d’oxydes inorganiques, avec en particulier le développement de détecteurs fibrés dans le cadre d’une collaboration avec le CERN. Fort de cette expérience, plusieurs projets de recherche et de développement ont été menés, au début des années 2010, en vue de définir leurs possibilités d’application dans les futures expériences au CERN.
La technique micro-pulling-down (µ-PD) est un procédé de tirage de monocristaux vers le bas, avec des formats (fibre, ruban, tube) contrôlés car imposés par la géométrie du capillaire situés au fond du creuset.
Grâce à cette technique, la cinétique de cristallisation et la stabilité de la composition sont susceptibles d’être étudiées dans une machine de tirage µ-PD à faible coût et rapide, avant que le matériau ne soit recommandé (ou rejeté) pour la croissance cristalline de cristaux massifs par le procédé Czochralski. Cette approche est très efficace pour la recherche de nouveaux matériaux, en particulier dans les universités et les laboratoires de recherche.
L’objectif de cet article est de présenter ce qui caractérise le procédé de tirage de fibres par cette technique, ainsi que les avancées récentes dans la conception d’équipement de tirage µ-PD avec différentes sources de chauffage et les avantages de la méthode pour cristalliser des fibres monocristallines performantes. Nous détaillerons quelques familles de matériaux dopés ou non par des ions de terres rares pour des applications dans le domaine des lasers, des scintillateurs et de la détection des ondes gravitationnelles.
Le lecteur trouvera en fin d'article un glossaire des termes utilisés.
MOTS-CLÉS
laser détection croissance cristalline Fibre µ-PD scintillateur
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Matériaux pour l'optique et les lasers > Fibres monocristallines - Procédé de tirage par micro-pulling-down (µ-PD) et applications > Contexte
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Contexte
La croissance des fibres monocristallines est difficile à réaliser par les méthodes classiques de croissance cristalline. Des méthodes de cristallisation de cristaux préformés en plaque existent. Elles utilisent la mise en forme du liquide à cristalliser à travers des conduits capillaires de géométries variées, il s’agit principalement des méthodes EFG et Stepanov . En revanche, ces techniques utilisent des creusets de grande capacité alimentés par des systèmes mécaniques relativement complexes. D’autre part, la géométrie des capillaires utilisés ne permet pas de contrôler et de maîtriser l’interface de cristallisation au cours du processus de tirage. De ce fait, on ne peut varier les paramètres de la croissance cristalline que de façon limitée. C’est la raison pour laquelle nous avons développé la méthode de la micro-pulling-down (µ-PD) dite aussi de la « goutte pendante ». Cette méthode utilise la cristallisation continue à travers une interface liquide-solide en dessous de la partie inférieure du capillaire, à l’extrémité du creuset (figure 1). Elle a été inventée par J. Ricard et développée dans les laboratoires de Fukuda au Japon et à l’ILM avec K. Lebbou ...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Contexte
BIBLIOGRAPHIE
-
(1) - TARTACHENKO (V.A.) - Capillary shaping in crystal growth from melts : I. Theory. - J. Cryst. Growth. 37, p. 272-284 (1977).
-
(2) - STEPANOV (A.V.) - * - . – Bulletin of Russian Academy (1957).
-
(3) - RICARD (J.) - Brevet Français. - 2321326 (1975).
-
(4) - YOON (D.H.), FUKUDA (T.) - J. Crystal Growth. - 35, p. 204 (1994).
-
(5) - LEBBOU (K.) et al - Journal of the American Ceramic Society. - 89 [1], p. 75-80 (2006).
-
(6) - KANCHANAVALEERAT (E.), COCHET-MUCHY (D.), KOKTA (M.), STONE-SUNDBERG (J.), SARKIES (P.), SARKIES (J.), SARKIES (Jo.) - Optical Materials. - 26, p. 337-341 (2004).
-
...
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive