Présentation
En anglaisRÉSUMÉ
Cet article revient sur la cristallisation de fibres monocristallines à partir de l’état liquide par le procédé micro-pulling down (µ-PD). Les avancées technologiques récentes dans l’ingénierie des procédés, la maîtrise et le contrôle de la cinétique de cristallisation par la technique µ-PD ont permis d’obtenir d’énormes progrès dans la croissance de fibres monocristallines performantes sur mesure pour un large domaine d’applications, en particulier les lasers et les scintillateurs. La croissance de fibres monocristallines de grenats pour des applications lasers et scintillation, ainsi que de saphir pour la détection des ondes gravitationnelles est détaillée et discutée dans cet article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article reviews the crystallization of single crystal fibers from the liquid state by the micro-pulling down (µ-PD) process. The recent technological advances in process engineering, mastery and control of crystallization kinetics by the µ-PD technique have made it possible to obtain enormous progresses in the growth of performed single crystal fibers tailored for a wide range of applications in particular lasers and scintillation. The growth of garnets single crystal fibers for laser and scintillation applications and sapphire for gravitational waves detection is detailed and discussed in this publication.
Auteur(s)
-
Kheirreddine LEBBOU : Directeur de recherche au CNRS, - Institut Lumière Matière (ILM), UMR 5306 CNRS, Lyon, France
INTRODUCTION
L'ingénierie moderne utilise des composants fabriqués à partir de cristaux de géométrie contrôlée, principalement sous la forme de plaques, fibres ou tubes, bien que parfois les formes soient beaucoup plus compliquées. Les cristaux de formats et de tailles spécifiques exempts de défauts et d’impuretés sont donc souhaitables ; ils peuvent être utilisés comme produits finaux avec un usinage supplémentaire minimal. Les procédés de croissance cristalline de cristaux massifs (lingots) nécessitent des creusets de cristallisation de dimensions très importantes, de l’ordre de quelques litres, ce qui présente un inconvénient majeur, ces conteneurs constitués de métaux rares tels l’iridium étant coûteux. En plus, de tels creusets possèdent une durée de vie limitée à quelques tirages, du fait de la dégradation chimique à laquelle ils sont soumis, ce qui augmente d’une façon importante le coût de la cristallisation des monocristaux. À partir de 2010, en raison de leurs caractéristiques remarquables dans le domaine des lasers et des scintillateurs, les fibres monocristallines ont fait l'objet d'intenses études. Le développement des guides d'ondes optiques a activé la croissance de fibres monocristallines pour des applications diversifiées.
Le développement de fibres monocristallines est motivé par des applications en optique qui ne sont accessibles ni aux fibres de verres, ni aux formes monocristallines massives. Le monocristal sous forme fibrée permet d'augmenter l’efficacité d’interaction entre le faisceau et le matériau. Pour des utilisations lasers, la configuration fibrée présente également d’autres avantages notamment une dissipation efficace de la chaleur emmagasinée dans le matériau grâce aux faibles distances entre la zone de pompage et le milieu thermostatique extérieur. De plus, en utilisant une grande longueur d’interaction, la concentration en cations activateurs (Nd3+, Yb3+…) peut être diminuée. Ces deux facteurs concourent à minimiser l'échauffement du matériau, ce qui est favorable pour les applications laser de forte puissance. Notons qu’une faible concentration en cations actifs permet également de minimiser les phénomènes de désexcitations non radiatives (extinction de l’émission de lumière par transfert d’énergie entre les ions). De plus, l’efficacité des oscillations lasers dans un réseau hôte monocristallin est souvent beaucoup plus grande que dans un réseau vitreux, car dans ce cas le désordre structural du matériau diminue les sections efficaces d’émission stimulée et la conductivité thermique est moindre. La faible dimension des fibres monocristallines minimise également la présence de défauts responsables de la faible résistance mécanique des matériaux massifs. D'autre part, les fibres monocristallines peuvent être utilisées pour les interactions du second ordre comme la génération d'harmonique, le mélange de fréquences, l’oscillation paramétrique et la modulation électro-optique.
Dans le domaine des scintillateurs, les fibres monocristallines sont de sérieuses candidates pour le développement de nouvelles générations de calorimètres à scintillation pour la physique des hautes énergies. Depuis 2005, l’ILM (Institut Lumière Matière) (ex LPCML) a fortement contribué au développement des fibres scintillantes à base d’oxydes inorganiques, avec en particulier le développement de détecteurs fibrés dans le cadre d’une collaboration avec le CERN. Fort de cette expérience, plusieurs projets de recherche et de développement ont été menés, au début des années 2010, en vue de définir leurs possibilités d’application dans les futures expériences au CERN.
La technique micro-pulling-down (µ-PD) est un procédé de tirage de monocristaux vers le bas, avec des formats (fibre, ruban, tube) contrôlés car imposés par la géométrie du capillaire situés au fond du creuset.
Grâce à cette technique, la cinétique de cristallisation et la stabilité de la composition sont susceptibles d’être étudiées dans une machine de tirage µ-PD à faible coût et rapide, avant que le matériau ne soit recommandé (ou rejeté) pour la croissance cristalline de cristaux massifs par le procédé Czochralski. Cette approche est très efficace pour la recherche de nouveaux matériaux, en particulier dans les universités et les laboratoires de recherche.
L’objectif de cet article est de présenter ce qui caractérise le procédé de tirage de fibres par cette technique, ainsi que les avancées récentes dans la conception d’équipement de tirage µ-PD avec différentes sources de chauffage et les avantages de la méthode pour cristalliser des fibres monocristallines performantes. Nous détaillerons quelques familles de matériaux dopés ou non par des ions de terres rares pour des applications dans le domaine des lasers, des scintillateurs et de la détection des ondes gravitationnelles.
Le lecteur trouvera en fin d'article un glossaire des termes utilisés.
MOTS-CLÉS
laser détection croissance cristalline Fibre µ-PD scintillateur
KEYWORDS
laser | detection | crystal growth | fiber | µ-PD | scintillation
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Matériaux pour l'optique et les lasers > Fibres monocristallines - Procédé de tirage par (µ-PD) et applications > Fibres monocristallines scintillatrices
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Fibres monocristallines scintillatrices
Les matériaux scintillateurs convertissent un rayonnement ionisant non visible en un rayonnement infrarouge, visible ou ultraviolet (facilement détectable à l'aide de photo-détecteurs modernes tels que des photomultiplicateurs, des photodiodes…), qui est transformé en un signal électrique. L’intensité de ce signal permet de quantifier l’énergie incidente absorbée par le scintillateur. Actuellement, les matériaux scintillateurs sont utilisés dans un large domaine d’applications telles que : imagerie médicale (tomographie par émission de positron – Positron Emission Tomography (PET), tomographie par émission de rayons X), sécurité (aéroports et contrôle des conteneurs), géophysique, exploration spatiale, contrôle de qualité dans l’industrie et bien entendu domaine de la physique des hautes énergies.
Physique des hautes énergies
La physique des hautes énergies étudie les constituants élémentaires de la matière ainsi que les forces fondamentales associées. Les outils pour ces études sont des expériences auprès d'accélérateurs de particules fonctionnant à des énergies très élevées ou délivrant des intensités de faisceau très grandes, ainsi que d'imposants détecteurs ultra-sensibles. Le Large Hadron Collider (LHC), lancé en septembre 2008 au CERN, en est la réalisation la plus spectaculaire à ce jour.
La demande en termes de performance de ces matériaux dépend de la manière dont ils sont réalisés et des applications visées. Dans la majorité des applications des hautes technologies, les matériaux scintillateurs sont utilisés sous forme de monocristaux .
La future génération de détecteurs pour la physique des hautes énergies nécessitera des détecteurs à haute granularité. Le mot granularité signifie que le détecteur est multifonctionnel (particules électromagnétiques, énergie...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Fibres monocristallines scintillatrices
BIBLIOGRAPHIE
-
(1) - TARTACHENKO (V.A.) - Capillary shaping in crystal growth from melts : I. Theory. - J. Cryst. Growth. 37, p. 272-284 (1977).
-
(2) - STEPANOV (A.V.) - * - . – Bulletin of Russian Academy (1957).
-
(3) - RICARD (J.) - Brevet Français. - 2321326 (1975).
-
(4) - YOON (D.H.), FUKUDA (T.) - J. Crystal Growth. - 35, p. 204 (1994).
-
(5) - LEBBOU (K.) et al - Journal of the American Ceramic Society. - 89 [1], p. 75-80 (2006).
-
(6) - KANCHANAVALEERAT (E.), COCHET-MUCHY (D.), KOKTA (M.), STONE-SUNDBERG (J.), SARKIES (P.), SARKIES (J.), SARKIES (Jo.) - Optical Materials. - 26, p. 337-341 (2004).
-
...
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive