Présentation
En anglaisAuteur(s)
-
Georges SAADA : Ancien élève de l’École Polytechnique - Docteur es sciences, LEM CNRS ONERA, Chatillon, France
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Soumis à une contrainte, un solide cristallin, par exemple un solide métallique, se déforme de manière réversible tant que la contrainte appliquée est inférieure à une valeur critique, dite limite élastique, ou limite d’élasticité. Au-delà de cette contrainte critique, la déformation cesse d’être réversible : une déformation, dite déformation plastique, subsiste après suppression de la contrainte. Le solide finit par se rompre lorsque l’on poursuit la déformation.
La ductilité définit l’aptitude à tolérer une déformation plastique importante, elle dépend à la fois de la nature du matériau et du type d’essai. Il est possible, par exemple, de réduire par laminage en plusieurs passes, un bloc métallique dont les dimensions sont de l’ordre du mètre à une plaque dont l’épaisseur est de l’ordre de la fraction de millimètre, soit une déformation de l’ordre de 103, alors qu’en traction uniaxiale, il est difficile d’atteindre une déformation à la rupture supérieure à 1.
L’étude de la déformation plastique a sans doute eu pour origine le souci de maîtriser le formage et l’utilisation des métaux, et plus généralement des matériaux. De ce fait, elle a été longtemps empirique et ce n’est que depuis quelques dizaines d’années qu’ont été élaborés les concepts nécessaires à la compréhension des phénomènes physiques se produisant lors des écoulements plastiques. Pour les solides cristallins, auxquels nous nous limiterons dans cet exposé, les mécanismes de base sont assez bien compris, mais la dynamique des écoulements est mal connue, et constitue actuellement un axe de recherche très actif.
Dans cet article, nous nous proposons de décrire aussi simplement que possible les mécanismes mis en jeu lors de la déformation plastique des métaux, et plus généralement des solides cristallins.
Au paragraphe 2, nous analysons les mécanismes de déformation d’un point de vue structural ; le paragraphe 3 décrit les aspects généraux des écoulements plastiques. Des exemples précis sont donnés au paragraphe 4. Le paragraphe 5 analyse l’état de contrainte dans un solide déformé plastiquement. La plasticité des polycristaux est analysée au paragraphe 6, suivi d’une brève conclusion.
Le lecteur trouvera en fin d'article un tableau des symboles et des abréviations utilisées.
VERSIONS
- Version archivée 1 de avr. 1980 par Georges SAADA, André ZAOUI, H. ARNOUX
- Version archivée 2 de oct. 1995 par Georges SAADA
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Étude et propriétés des métaux
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Conclusion
La théorie élastique des dislocations constitue un support pertinent de l’étude de la plasticité tant que l’on se limite aux aspects géométriques et statiques des phénomènes de déformation : étude du mode de déformation plastique, existence de contraintes internes (incompatibilité de déformation plastique, interactions élastiques entre défauts immobiles). L’analyse des contraintes internes combinée à celle de l’activation thermique, permet de donner une description semi-quantitative d’un grand nombre de comportements mécaniques. Toutefois, bon nombre de phénomènes importants ne peuvent pas être décrits dès qu’il faut prendre en compte l’évolution de la sous-structure. Ce sont par exemple les phénomènes d’instabilité, ou encore des comportements atypiques comme celui de Ni3Al ou du Be déformé en glissement prismatique. La raison profonde de cet état de fait est que la déformation plastique est un phénomène essentiellement dynamique.
Or, les phénomènes contrôlant la mobilité des dislocations, s’ils sont connus dans leur principe, souffrent de ne pouvoir être évalués quantitativement, faute d’informations suffisantes sur la structure du cœur des dislocations. La dynamique de l’évolution de la sous-structure nous est encore peu connue. Les figures 35, 36, 37, et 38 illustrent la difficulté de décrire analytiquement cette dynamique. Il s’agit, en effet, d’un problème d’une grande complexité, tant sur le plan mathématique, en raison du nombre de paramètres à prendre en compte, que du point de vue physique : le système est non linéaire et combine des échelles spatiales et temporelles très différentes, de l’ordre de la distance interatomique à la taille de l’échantillon, de l’inverse de la fréquence de Debye à des temps de l’ordre de la seconde. Il n’existe pas, on l’aura compris, de théorie complète de la plasticité. L’étude des phénomènes d’écoulement plastique peut s’appuyer toutefois sur des concepts et des résultats solides. Elle ne progressera qu’à condition de combiner recherches expérimentales et calculs théoriques. Les développements actuels...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - BENARD (J.), MICHEL (A.), PHILIBERT (J.), TALBOT (J.) - Métallurgie générale. - Masson Paris (1984).
-
(2) - KUBIN (L.P.), MARTIN (G.) - Non linear phenomena in linear science. - (1987) Trans. tech. Aedermannsdorf Suisse 498 p. (1988).
-
(3) - CAILLARD (D.), THIBAULT (J.), VEYSSIÈRE (P.) - Mécanismes de déformation et résistance des matériaux nouveaux. - J. de Ph. vol. 1, n° 6, 372 p. Paris (1991).
-
(4) - CHAMPIER (G.), SAADA (G.) - Déformation plastique des métaux et alliages. - Masson, Paris, 317 p. (1968).
-
(5) - ESHELBY (J.D.) - Solid state physics. - Ed. F. Seitz et D. Turnbull vol. 3, p. 79. Academic Press, New York, 581 p. (1956).
-
(6) - GROH (P.), KUBIN (L.P.), MARTIN (J.L.) - Dislocations...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive