Présentation
En anglaisRÉSUMÉ
La chimie supramoléculaire est à la base d'assemblages moléculaires complexes omniprésents dans la machinerie biologique dont ils assurent à la fois l’organisation structurale et la fonctionnalité. Cet article présente tout d'abord, au travers d'exemples choisis, quelques facettes de la chimie supramoléculaire dans le monde vivant. Une seconde partie traitera du concept de chimie combinatoire dynamique et introduira la notion de topologie moléculaire appliquée à la chimie des caténanes, des rotaxanes et des nœuds.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Supramolecular chemistry is the basis of complex molecular assemblies omnipresent in biological machinery, where they provide both organization and functionality. This article first presents, through selected examples, some aspects of supramolecular chemistry in the living world. A second part deals with the concept of dynamic combinatorial chemistry, and also introduces the concept of molecular topology applied to the chemistry of catenanes, rotaxanes and knots.
Auteur(s)
-
Christophe BUCHER : Directeur de recherche CNRS - Laboratoire de chimie, École normale supérieure de Lyon, CNRS, UCBL, 46 Allée d'Italie, 69364 Lyon, France
-
Jean-Pierre DUTASTA : Directeur de recherche CNRS - Laboratoire de chimie, École normale supérieure de Lyon, CNRS, UCBL, 46 Allée d'Italie, 69364 Lyon, France
INTRODUCTION
La chimie supramoléculaire repose sur des principes régissant l'association et l'auto-organisation des molécules via des liaisons non covalentes appelées aussi liaisons faibles. Cette branche de la chimie s'est développée à partir de la fin des années 1960 avec la mise en évidence d'associations entre deux ou plusieurs entités moléculaires. Ces assemblages ont la propriété d'être réversibles et leur stabilité thermodynamique va dépendre des forces intermoléculaires mises en jeu. C'est sur ces bases que s'est développé le principe de la reconnaissance moléculaire, où les notions de complémentarité géométrique et électronique et de préorganisation sont essentielles. Ces différentes notions ont été présentées dans l'article [NM 220] « Introduction à la chimie supramoléculaire. Concepts – chimie hôte invité ».
Dans ce second article d'introduction à la chimie supramoléculaire, nous montrerons tout d'abord comment les phénomènes de reconnaissance s'appliquent à la chimie du vivant. Ils sont essentiels pour maintenir la conformation et la stabilité des structures des biomolécules, leur conférant ainsi des fonctions très variées. Nous verrons aussi comment les informations contenues dans ces assemblages supramoléculaires peuvent être utilisées dans le domaine de la thérapie et du diagnostic. Nous aborderons ensuite l'aspect dynamique de la chimie supramoléculaire au travers de ce que J.-M. Lehn a appelé la chimie combinatoire dynamique, où les processus d'auto-assemblages vont être utilisés pour identifier ou amplifier des phénomènes de reconnaissance moléculaire. Enfin, dans une dernière section, nous introduirons quelques notions de topologie moléculaire en relation avec la conception d'entités plus complexes comme les rotaxanes ou les nœuds moléculaires, dont la synthèse nécessite souvent des approches de chimie supramoléculaire.
MOTS-CLÉS
auto-organisation caténanes rotaxanes nœuds moléculaires chimie supramoléculaire chimie combinatoire dynamique topologie moléculaire
KEYWORDS
self-organization | catenanes | rotaxanes | molecular knots | supramolecular chemistry | dynamic combinatorial chemistry | molecular topology
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Biomédical - Pharma > Médicaments et produits pharmaceutiques > Chimie pharmaceutique > Introduction à la chimie supramoléculaire - Du vivant à l'ingénierie moléculaire > Chimie supramoléculaire du vivant
Accueil > Ressources documentaires > Sciences fondamentales > Physique Chimie > Chimie des milieux complexes > Introduction à la chimie supramoléculaire - Du vivant à l'ingénierie moléculaire > Chimie supramoléculaire du vivant
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanosciences : concepts, simulation et caractérisation > Introduction à la chimie supramoléculaire - Du vivant à l'ingénierie moléculaire > Chimie supramoléculaire du vivant
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Chimie supramoléculaire du vivant
Les systèmes supramoléculaires sont primordiaux dans l'évolution et l'adaptation des systèmes vivants, et ce qu'on pourrait appeler la machinerie biologique repose pour beaucoup sur ces principes de reconnaissance et d'auto-organisation. La chimie du vivant est extrêmement complexe et fait appel à des macromolécules, entités covalentes, ou des supermolécules, assemblages supramoléculaires de plusieurs entités covalentes. L'extrême complexité que peuvent atteindre ces systèmes supramoléculaires tant dans leurs aspects structuraux que leurs fonctions ont depuis longtemps fasciné et inspiré les chercheurs. Dans cette section, nous discutons quelques exemples simples qui illustrent à la fois la diversité et la complexité des systèmes supramoléculaires en biologie.
1.1 Auto-assemblages et supermolécules du vivant
Qu'il s'agisse d'assemblages de macromolécules comme certaines protéines et polynucléotides, ou d'agrégats multimoléculaires comme les membranes cellulaires et les vésicules, les constituants de la matière biologique sont riches de systèmes organisés impliquant des liaisons non covalentes [NM 220]. Les phénomènes d'auto-assemblages ont de plus un rôle essentiel dans tous les processus du vivant pour assurer différentes fonctions biologiques et également pour ordonner et maintenir l'intégrité des structures supramoléculaires. L'un des plus connus est sans doute l'organisation en double hélice de l'ADN due à l'association de deux brins d'ADN stabilisée par des liaisons hydrogène (liaisons-H) entre paires de nucléotides complémentaires constituées des bases nucléiques adénine-thymine (A-T) et cytosine-guanine (C-G), et par l'empilement entre paires de bases par interactions π − π (figure 1). C'est en 1953 que Watson et Crick proposèrent la structure en double hélice de l'ADN (figure 2) ...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Chimie supramoléculaire du vivant
BIBLIOGRAPHIE
-
(1) - WATSON (J.D.), CRICK (F.H.C.) - Nature. - 171, 737-738 (1953).
-
(2) - KENDREW (J.C.), BODO (G.), DINTZIS (H.M.), PARRISH (R.G.), WYCKOFF (H.), PHILLIPS (D.C.) - Nature. - 181, 662-666 (1958).
-
(3) - KENDREW (J.C.), DICKERSON (R.E.), STRANDBERG (B.E.), HART (R.G.), DAVIES (D.R.), PHILLIPS (D.C.), SHORE (V.C.) - Nature. - 185, 422-427 (1960).
-
(4) - RICHARDSON (J.S.) - Advances in Protein Chemistry. - 34, 167-339 (1981).
-
(5) - PERUTZ (M.F.), ROSSMANN (M.G.), CULLIS (A.F.), MUIRHEAD (H.), WILL (G.), NORTH (A.C.T.) - Nature. - 185, 416-422 (1960).
-
(6) - FERMI (G.), PERUTZ (M.F.), SHAANAN (B.), FOURME (R.) - J. Mol. Biol.. - 175, 159-174 (1984).
-
...
DANS NOS BASES DOCUMENTAIRES
Visualisation des structures moléculaires complexes (protéines, polynucléotides) : the NGL Viewer :
AS Rose, AR Bradley, Y Valasatava, JM Duarte, A Prlić and PW Rose. Web-based molecular graphics for large complexes. Bioinformatics : bty 419, 2018.doi :10.1093bioinformatics/bty 419
AS Rose and PW Hildebrand. NGL Viewer : a web application for molecular visualization. Nucl Acids Res (1st July 2015) 43 (W1) : W576-W579 first published online April 29, 2015. doi :10.1093/nar/gkv402
Visualisation 3D des protéines et autres molécules : Proteopedia :
Prilusky J, Hodis E, Canner D, Decatur W, Oberholser K, Martz E, Berchanski A, Harel M, Sussman JL. Proteopedia : A status report on the collaborative, 3D web-encyclopedia of proteins and other biomolecules. J Struct Biol. 2011 Apr 23. PMID :21536137 doi :10.1016/j.jsb.2011.04.011.
NGL Viewer : Figure 3 (PDB ID : 3RGK, DOI :10.1016/S0022-2836(05)80181-0). Figure 4 (PDB ID : 2hhb, DOI :10.1016/0022-2836(84)90472-8). Figure 5B (PDB ID : 1LGH, DOI :10.1016/S0969-2126(96)00063-9). Figure 6 (PDB ID : 2J0D, DOI :10.1073/pnas.0603236103).
Proteopedia : Figure 5A (PDB ID : 2TMV, DOI :10.1016/0022-2836(89)90391-4).
HAUT DE PAGE
Theoretical and Computational Biophysics Group de l'université de l'Illinois à Urbana-Champaign (USA) :
Sur le fonctionnement des enzymes :
...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive