Présentation
En anglaisRÉSUMÉ
La conception d’un lanceur en avant-projet a pour but de définir les paramètres essentiels de la configuration : nombre d’étages, dimensions, types d’ergols, masses d’ergols et niveaux de poussée. Ces paramètres conditionnent l’ensemble du développement sur plusieurs années et doivent être optimisés avec des marges suffisantes. Le cahier des charges spécifie des missions de référence, sous forme de masses de charge utile sur des orbites données. Il implique de résoudre simultanément un problème d’étagement (choix des masses et poussées) et un problème de trajectoire (calcul de la performance). Le couplage de ces deux problèmes d’optimisation nécessite des méthodes spécifiques présentées dans cet article avec différents exemples d’applications.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The purpose of the preliminary design of a launcher is to define the main parameters of the configuration: number of stages, sizes, types of propellants, propellant masses and thrust levels. These parameters condition the entire development over several years and must be optimized with sufficient margins. The specifications define reference missions, in the form of payload masses in given orbits. It implies to solve simultaneously a staging problem (choice of masses and thrusts) and a trajectory problem (performance calculation). The coupling of these two optimization problems requires specific methods presented in this article with different application examples.
Auteur(s)
-
Max CERF : Ingénieur en analyse de mission - ArianeGroup, Les Mureaux, France
INTRODUCTION
Un lanceur spatial se compose d’étages propulsifs permettant d’atteindre une vitesse orbitale d’au moins 8 km/s. La propulsion est de type anaérobie, car l’oxygène ambiant devient insuffisant au-delà de 30 km d’altitude. La totalité du carburant nécessaire est embarquée par le lanceur au décollage, ce qui conduit à une masse très importante. La propulsion fusée utilise des propergols (solides) ou des ergols (liquides avec un oxydant et un réducteur stockés séparément). On utilise le terme ergols pour simplifier.
Un lanceur monoétage est pénalisé par sa masse sèche conservée jusqu’à l’injection en orbite. L’étagement consiste à répartir les ergols en étages (entre 2 et 4) ayant leurs propres moteurs, réservoirs, structures et équipements. Les étages sont largués en fin de combustion pour alléger la masse restante du lanceur. Les choix de conception portent sur le nombre d’étages, leurs dimensions, l’architecture générale, les technologies propulsives (ergols, moteurs) et structurales (acier, aluminium, inox, carbone), les masses d’ergols et les niveaux de poussée. Ces choix conditionnent le développement du lanceur qui prend plusieurs années. Il est très difficile de les remettre en question ultérieurement et une mauvaise estimation initiale peut aboutir à un lanceur sous-performant, voire à une impasse. Les marges doivent être suffisantes pour anticiper les cas défavorables, sans pour autant aboutir à un lanceur surdimensionné. Ces marges dépendent des incertitudes sur la modélisation du lanceur en phase d’avant-projet.
Le cahier des charges définit une ou plusieurs missions de référence caractérisées par une masse de charge utile donnée à amener sur une orbite donnée. Il peut ou non imposer certains choix technologiques (par exemple pour réutiliser des propulseurs existants) et autoriser une versatilité du lanceur (nombre de boosters, dernier étage) pour des missions de référence très dissemblables.
La conception préliminaire d’un lanceur implique plusieurs disciplines : propulsion, architecture, aérodynamique, trajectoire, pilotage, thermique, moyens sol. L’objectif est de trouver le lanceur le moins coûteux réalisant la mission spécifiée. L’optimisation globale du lanceur est un problème difficile, mêlant variables continues (masses, poussées…) et discrètes (nombre d’étages, types d’ergols…). Les approches multidisciplinaires (MDO) abordent ce problème avec de nombreuses variantes, mais sont souvent complexes à mettre en œuvre.
Cet article expose les méthodes standards utilisées au début d’un avant-projet. L’objectif est de définir les masses d’ergols et niveaux de poussée. La première partie introduit la formulation des problèmes d’étagement et de trajectoire. La méthode classique présentée en deuxième partie se base sur une modélisation impulsionnelle pour découpler ces deux problèmes, puis procéder par itérations. La méthode couplée présentée en troisième partie résout simultanément les deux problèmes. Elle permet de traiter les configurations versatiles et de prendre en compte les incertitudes sur les hypothèses d’étagement. La quatrième partie concerne les réserves d’ergols nécessaires pour garantir le succès du vol avec un niveau de probabilité suffisant.
MOTS-CLÉS
KEYWORDS
launcher | propulsive stage | optimisation | coupling
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Réserve d’ergols
La configuration du lanceur et son environnement ne sont pas parfaitement connus le jour du vol. Pour garantir une probabilité suffisante d’atteindre l’orbite, il est nécessaire de prévoir des réserves d'ergols, en particulier sur le dernier étage.
4.1 Performance et réserve
Notons m e la masse d’ergols totale du dernier étage, m s sa masse sèche, m r la masse de réserve, m u la masse de charge utile et v e la vitesse d’éjection. Les masses initiale et finale sont M i et M f et l’impulsion délivrée par l’étage est :
La masse d’ergols est fixée (taille des réservoirs) de même que la masse sèche.
Supposons que la réserve varie de δm r. Pour conserver l’impulsion nominale associée à la trajectoire optimale, la masse utile doit varier de δm u qui s’exprime à partir de (27) :
Cette formule montre qu’une augmentation de réserve induit une perte de masse utile supérieure. En effet, la réserve prend la place de la charge utile (effet direct) et n’est plus disponible en nominal pour la propulsion (effet indirect). On a en pratique des coefficients d’échange de l’ordre de :
-
δm u ≈ − 1,5δm r pour ΔV ≈ v e ;
-
δm u ≈ − 2,5δm r pour
La réserve doit être limitée au strict besoin pour la probabilité...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Réserve d’ergols
BIBLIOGRAPHIE
-
(1) - BRYSON (A.E.), HO (Y.-C.) - Applied Optimal Control. - Hemisphere Publishing Corporation (1975).
-
(2) - DURET (F.), FROUARD (J.-P.) - Conception générale des systèmes spatiaux – Conception des fusées porteuses. - ENSAE (1980).
-
(3) - HULL (D.G.) - Optimal Control Theory for Applications. - Springer (2003).
-
(4) - LAWDEN (D.F.) - Optimal Trajectories for Space Navigation. - Butterworths (1963).
-
(5) - MARTY (D.) - Conception des véhicules spatiaux. - Masson (1986).
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive