Présentation
En anglaisRÉSUMÉ
La propulsion électrique est de plus en plus utilisée pour la mise à poste des satellites, car elle permet des économies de masse très importantes. La contrepartie est un transfert plus long et plus complexe pour rejoindre l’orbite finale à partir de l’injection par un lanceur. Pour des satellites de télévision ou de navigation à placer en orbite haute, la priorité est la minimisation du temps de transfert en prenant en compte les éclipses durant lesquelles la propulsion est coupée. Pour des constellations de satellites à placer en orbite basse, la priorité est la minimisation de la consommation, en utilisant l’effet de précession naturelle dû à l’aplatissement terrestre pour réaliser le changement de plan. L’article expose la formulation de ces deux problèmes de transfert à poussée faible et présente des méthodes de résolution ainsi que des cas d’application illustratifs.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Electric propulsion is more and more employed for satellite launches because it offers significant fuel savings. The drawback is a longer and more complex transfer to reach the final orbit starting from the launcher injection. For television or navigation satellites to put on high Earth orbits, the main goal is to minimize the transfer time taking into account the propulsion shut-off during eclipses. For constellations of satellites to put on low Earth orbits, the main goal is to minimize the transfer consumption using the natural precession due to the Earth flattening to achieve the plane change. The article presents the formulation of both problems and the solution methods with some illustrative application cases.
Auteur(s)
-
Max CERF : Ingénieur en analyse de mission - ArianeGroup, Les Mureaux, France
INTRODUCTION
La propulsion électrique se généralise sur les satellites du XXIe siècle. Son principe est d’accélérer des particules ionisées en les soumettant à un champ électrostatique ou électromagnétique pour les éjecter à des vitesses très élevées. Les impulsions spécifiques (1 000 s à 8 000 s) sont nettement meilleures que celles des propulseurs chimiques basés sur la combustion d’ergols (300 s à 450 s), mais les faibles débits massiques conduisent à des poussées généralement inférieures à 1 N. La propulsion électrique reste par conséquent réservée aux phases orbitales de maintien ou de mise à poste. Elle permet des économies de masse importantes au prix de manœuvres plus complexes et plus longues. Le fonctionnement du moteur nécessite par ailleurs une forte puissance électrique, contrairement au cas d’un propulseur chimique. Cette puissance étant générée par des panneaux solaires, le transfert doit tenir compte des passages en éclipses pendant lesquels la propulsion est coupée.
Cet article traite de la mise à poste d’un satellite à propulsion électrique partant d’une orbite d’injection atteinte par un lanceur. On peut distinguer deux situations selon l’orbite à atteindre et les objectifs de consommation et de durée.
La première situation concerne la mise à poste de satellites en orbite haute. Ces satellites pour la télévision, la météorologie, la navigation sont à placer sur des orbites circulaires de type GEO (Geostationary Earth Orbit) équatoriale à 35 786 km d’altitude ou MEO (Medium Earth Orbit) inclinée à environ 55° et 23 000 km d’altitude. Le lanceur injecte généralement le satellite sur une orbite elliptique à bas périgée de type GTO (Geostationary Transfer Orbit) ou une orbite circulaire basse de type LEO (Low Earth Orbit). Ces satellites représentent des investissements très coûteux et doivent être rendus opérationnels le plus tôt possible. Le transfert pouvant prendre plusieurs semaines ou mois, l’objectif principal est alors d’en minimiser la durée en tenant compte des passages répétés en éclipses. Ce problème de transfert en temps minimal est traité dans la première partie de l’article.
La seconde situation concerne la mise à poste de constellations de satellites en orbite basse. Ces satellites pour les communications ou l’observation terrestre sont à placer sur des orbites circulaires de type LEO ou SSO (Sun Synchronous Orbit) répartis sur différents plans couvrant la surface terrestre. Le déploiement de la constellation s’effectue par des lancements de plusieurs dizaines ou centaines de satellites sur une orbite basse initiale. Chaque satellite doit ensuite rejoindre son orbite finale, ce qui nécessite un changement de plan généralement assez coûteux. L’objectif principal est alors de minimiser la consommation en utilisant en particulier la précession naturelle due à l’aplatissement terrestre. Ce problème de transfert en consommation minimale est traité dans la seconde partie de l’article.
MOTS-CLÉS
propulsion électrique minimisation du temps de transfert changement de plan précession naturelle
KEYWORDS
electric propulsion | transfer time minimization | plane change | natural precession
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Transfert à consommation minimale
Cette section traite le transfert à consommation minimale entre orbites circulaires en utilisant la précession naturelle due à l’aplatissement terrestre.
2.1 Modèle dynamique
On se place dans un repère géocentrique inertiel (OXYZ) avec les axes X et Z pointant respectivement vers le méridien de Greenwich à la date initiale et vers le pôle Nord.
Le plan orbital est défini par l'inclinaison I et l'ascension droite du nœud ascendant Ω (RAAN, Right Ascension of Ascending Node). L'inclinaison I est l'angle du plan orbital avec le plan équatorial (OXY). L'intersection du plan orbital avec l'équateur est la ligne des nœuds. L'ascension droite Ω est l'angle entre l'axe X et la direction du nœud ascendant NA (nœud traversé vers le Nord) comme représenté sur la figure 7.
Pour le problème étudié ici, on impose que l’orbite reste constamment circulaire au cours du transfert. Cette hypothèse peut paraître restrictive, mais on observe qu’elle donne des résultats proches d’une stratégie générale avec des orbites intermédiaires quelconques au cours du transfert. Son intérêt est, d’une part, de simplifier la résolution du problème de consommation minimale et, d’autre part, de faciliter le suivi du véhicule depuis le sol au cours du transfert.
La forme d’une orbite circulaire est définie de manière équivalente par son rayon a ou par sa vitesse orbitale constante V. Une orbite circulaire est donc complètement définie dans le repère terrestre par les trois paramètres (V, I, Ω).
En se restreignant à des orbites circulaires, on peut utiliser le modèle d'Edelbaum, obtenu en moyennant les équations de Gauss ...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Transfert à consommation minimale
BIBLIOGRAPHIE
-
(1) - BETTS (J.T.) - Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. - SIAM (2010).
-
(2) - BRYSON (A.E.), HO (Y.-C.) - Applied Optimal Control. - Hemisphere Publishing Corporation (1975).
-
(3) - CHOBOTOV (V.) - Orbital Mechanics Third edition. - AIAA (2002).
-
(4) - CONWAY (B.A.) - Spacecraft Trajectory Optimization. - Cambridge University Press (2010).
-
(5) - GABLONSKY (J.M.) - Direct version 2.0 userguide. - Technical Report, CRSC-TR01-08, Center for Research in Scientific Computation, North Carolina State University (2001).
-
(6) - HULL (D.G.) - Optimal control theory for applications. - Springer (2003).
-
...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive