Présentation

Article

1 - DÉFINITION DES CONDITIONS GIVRANTES

2 - INSTRUMENTATION

3 - TRAITEMENT ET ANALYSE DES DONNÉES

4 - CONCLUSION

Article de référence | Réf : TRP4002 v1

Instrumentation
Givrage des aéronefs, mesures en vol dans un contexte de certification

Auteur(s) : Guy FEBVRE

Date de publication : 10 mars 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Tout aéronef civil destiné à transporter des passagers est soumis à une procédure de certification garantissant le plus haut niveau possible de sécurité. En Europe, l'Agence européenne de la sécurité aérienne (AESA) est à l'origine de l'actuelle réglementation en matière de sécurité de l'aviation civile. Cette réglementation stipule que les constructeurs d'aéronefs doivent démontrer comment ils rendent acceptables le niveau de sécurité de leur appareil. Cet article explore la problématique de la mesure des caractéristiques d'un nuage naturel givrant, étape nécessaire à la démonstration de l'aptitude de vol d'un appareil en conditions givrantes naturelles, et qui nécessite une instrumentation spécifique. Les deux familles d'instruments, granulomètre laser et capteur à fil chaud sont décrits et critiqués d'un point de vue théorique et expérimental.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Guy FEBVRE : Enseignant-chercheur - Institut universitaire de Technologie, université d'Auvergne - Laboratoire de Météorologie physique, UMR 6016, université Blaise Pascal, CNRS

INTRODUCTION

Un nuage au sein de l'atmosphère terrestre peut être considéré comme la partie condensée d'une fraction de la vapeur d'eau présente. Les processus de condensation conduisent à la formation d'hydrométéores de dimensions suffisamment petites (de quelques microns à 500 microns) pour que l'agitation moléculaire ambiante les maintienne en suspension.

Dans la première couche de l'atmosphère (troposphère) qui s'étend du sol jusqu'à une dizaine de kilomètres d'altitude, le profil de température de l'air est décroissant de + 15 à – 60 oC (cas d'une atmosphère standard).

Les hydrométéores formés peuvent donc se situer dans une ambiance à température négative. Lorsque l'on a des hydrométéores liquides, c'est-à-dire des gouttes, la congélation n'est pas systématique même si la température interne des gouttes est inférieure au point de solidification. Cet état, connu sous le nom de surfusion, est un état métastable qui cesse très brutalement à la moindre perturbation.

Les conditions de pureté de l'air et les processus de formation des gouttelettes de nuage permettent au phénomène d'exister relativement couramment dans l'atmosphère, alors que sur le sol le phénomène est exceptionnel.

On comprend alors que le passage d'un aéronef dans ce type de nuage crée la perturbation nécessaire à la congélation des gouttelettes sur les bords d'attaque provoquant par accrétion, dans un premier temps, une modification de la géométrie de ceux-ci et par voie de conséquence, des qualités aérodynamiques de l'ensemble et, dans un second temps, une surcharge due à la masse congelée. Sans système de dégivrage adapté, les deux phénomènes peuvent conduire à la perte de l'appareil.

L'Agence européenne de la sécurité aérienne (AESA) est à l'origine de l'actuelle réglementation en matière de sécurité de l'aviation civile en Europe. Cette réglementation stipule que tous les constructeurs d'aéronefs doivent faire la démonstration de l'aptitude de vol d'un appareil en conditions givrantes naturelles afin d'atteindre le niveau de sécurité requis.

Une partie de la démonstration peut passer par une phase d'essai en vol en recherchant des conditions givrantes dont la sévérité sera évaluée à partir des caractéristiques nuageuses rencontrées. Les valeurs de ces caractéristiques nuageuses sont reportées sur des abaques annexés à la réglementation. Le constructeur doit démontrer que les essais en vol ont permis d'explorer ce domaine règlementaire.

Pour cela, les essais en vol doivent être organisés afin de permettre la mesure des caractéristiques nuageuses nécessaire à l'évaluation de la sévérité du givrage. L'appareil d'essais se voit donc équipé d'un ensemble d'instruments de mesures spécifiques.

L'objet de cet article est de décrire ces instruments et d'en préciser l'utilisation.

Dans un premier temps, la notion de conditions givrantes sera définie des points de vue physique et aéronautique. L'instrumentation spécifique à leur exploration sera présentée en insistant aussi bien sur l'aspect théorique que sur la technique. Cette instrumentation est constituée de granulomètres laser aéroportés et de capteurs à fil chaud. Enfin une dernière section permettra d'entrevoir les outils d'analyse et leurs usages à travers quelques exemples choisis d'essais en vol.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-trp4002


Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

2. Instrumentation

Deux familles d'instruments sont actuellement utilisées pour ces campagnes de certification. Elles sont présentées dans ce paragraphe.

2.1 Cahier des charges

Lors d'essais en vol destinés à valider les systèmes de dégivrage ou d'antigivrage, l'appareil doit disposer des moyens de mesures permettant de positionner le point d'essai sur les enveloppes de l'annexe C. Pour cela, il faut connaitre le contenu en eau du nuage et mesurer le diamètre volumique médian en plus des grandeurs classiques comme la température, altitude, vitesse…

Afin de définir l'instrumentation appropriée, rappelons qu'un nuage de gouttelettes d'eau liquide peut contenir jusqu'à 10 000 particules par centimètre cube ayant des diamètres variant de 0 à quelques dizaines de microns si l'on exclut la partie précipitante du nuage. Les contenus en eau portées par ces gouttes peuvent localement atteindre plusieurs grammes par mètre cube. N'oublions pas que la présence de cristaux de glace au sein d'un nuage d'eau surfondue n'est pas rare et qu'il est donc nécessaire de discriminer la phase des hydrométéores. Lors des calculs des paramètres relatifs à la phase liquide, il est nécessaire d'exclure la glace.

Les moyens mis en œuvre doivent permettre de caractériser le nuage sur la trajectoire de l'appareil en fournissant un niveau de détail (spatial et temporel) suffisant pour l'analyse du comportement des systèmes de dégivrage et d'antigivrage.

HAUT DE PAGE

2.2 Constructeurs

Historiquement, lors des premiers essais de mesure des conditions givrantes effectuées par la NACA, un ensemble de cylindres tournants de diamètres différents était installé sur les avions d'essais. Les modèles d'accrétion et les quantités de glace collectée permettaient de remonter au diamètre effectif et au contenu en eau du nuage givrant.

Dans les années 1970, les progrès de l'optoélectronique permirent d'envisager le développement d'instruments capables de dimensionner directement les hydrométéores rencontrés. À cette époque, la problématique de la détermination de la taille des hydrométéores était devenue cruciale pour la compréhension de la microstructure des nuages et des précipitations ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Instrumentation
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BAUMGARDNER (D.) -   An analysis and comparison of five water droplet measuring instruments.  -  Journal of Climate and Applied Meteorology, 22, no 5, p. 891‐910, doi:10.1175/1520-0450(1983)022<0891:AAACOF>2.0.CO;2, 1er mai 1983.

  • (2) - BAUMGARDNER (D.), DYE (J.E.), STRAPP (J.W.) -   Evaluation of the forward scattering spectrometer probe. II – Corrections for coincidence and dead-time losses.  -  Journal of Atmospheric and Oceanic Technology, 2 (1985).

  • (3) - BAUMGARDNER (D.), SPOWART (M.) -   Evaluation of the forward scattering spectrometer probe. Part III : Time response and laser inhomogeneity limitations.  -  Journal of Atmospheric and Oceanic Technology, 7, no 5, p. 666‐672, doi:10.1175/1520-0426(1990)007<0666:EOTFSS>2.0.CO;2, 1er oct. 1990.

  • (4) - BAUMGARDNER (D.), DYE (J.E.), GANDRUD (B.W.), KNOLLENBERG (R.G.) -   Interpretation of measurements made by the Forward Scattering Spectrometer Probe (FSSP-300) during the Airborne Arctic Stratospheric Expedition.  -  JGR, Journal of Geophysical Research. Part D, Atmospheres, 97, no 8, p. 8035‐8046 (1992).

  • (5) - BITER (C.J.), DYE (J.E.),...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS