Présentation
En anglaisRÉSUMÉ
Dans cet article, le principe général des méthodes de diagnostic des défauts des éoliennes sera présenté. Ensuite, les méthodes de diagnostic des défauts des éoliennes les plus connues de la littérature seront étudiées et comparées en utilisant plusieurs exemples. L’objectif est de montrer leur capacité à répondre aux défis liés au développement et à l’implémentation d’un système d’aide à la maintenance prévisionnelle de parcs éoliens.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
In this article, the state of the art in the monitoring of wind turbines to improve their availability and reduce their maintenance costs is studied and discussed. The methods of fault diagnosis for the best-known wind turbines are then studied and compared, with the help of some examples. The aim is to show their ability to meet the challenges of developing and implementing a maintenance system for wind farms.
Auteur(s)
-
Moamar SAYED MOUCHAWEH : Professeur de l’Institut Mines-Télécom - IMT Lille Douai, Douai, France
INTRODUCTION
Les États membres de la Commission européenne ont pris l’engagement de réduire d’ici à 2020 la consommation d’énergie primaire de 20 %. Afin d’atteindre cet objectif, il est devenu indispensable de développer et d’intégrer des sources d’énergie renouvelable (SER), en particulier les sources éoliennes, dans les réseaux de production usuels en veillant à garantir deux objectifs :
-
accroître la production des SER, en particulier les parcs éoliens, en augmentant leur disponibilité et leur fiabilité ;
-
diminuer les coûts de production en réduisant les coûts de maintenance et limitant les conséquences de défauts affectant le fonctionnement normal des composants des SER.
Afin de pouvoir atteindre ces deux objectifs, il est indispensable d’équiper les éoliennes d’outils de surveillance efficaces permettant de détecter de manière précoce et fiable l’apparition de défauts et d’estimer leur criticité et durée de vie restante afin de réaliser des ajustements ou des réparations au plus tôt et à moindre coût.
Le diagnostic de défauts des éoliennes est une tâche très difficile à réaliser, notamment à cause de la forte variabilité de la vitesse du vent et des turbulences autour du plan du rotor, la non-linéarité de la dynamique des éoliennes, l’apparition de certains défauts (par exemple, les défauts des actionneurs de pivotement de l’angle de calage des pales) dans des conditions de fonctionnement (région d’optimisation de la puissance) où les conséquences de ces défauts sont cachées, les actions de la commande qui compensent les effets de défauts et le faible volume de données décrivant les défauts par rapport aux données de fonctionnement normal.
Il existe de nombreuses méthodes de diagnostic de défauts des éoliennes dans la littérature. Ces méthodes sont fondées sur l’utilisation d’un modèle caractérisant les modes ou les comportements, de fonctionnement normal et/ou défaillant. En général, ces méthodes peuvent être classées en deux catégories principales : les méthodes à base de modèle analytique et les méthodes à base de traitement du signal et d’intelligence artificielle. Dans la première classe, un modèle mathématique ou analytique (quantitatif et/ou qualitatif) est construit en utilisant une connaissance a priori sur la dynamique et/ou la structure du système. Dans la deuxième classe, le modèle est construit par apprentissage en utilisant un ensemble de données sur le comportement du système. Les approches appartenant à ces deux catégories ont leurs avantages et inconvénients selon la connaissance disponible sur le comportement du système, sa complexité, le mécanisme d’apparition des défauts et leur dynamique de développement.
Dans cet article, le principe général des méthodes de diagnostic de défauts des éoliennes sera présenté. Ensuite, les méthodes de diagnostic de défauts des éoliennes les plus connues de la littérature seront étudiées et comparées en utilisant plusieurs exemples. L’objectif est de montrer leur capacité à répondre aux défis liés au développement et à l’implémentation d’un système d’aide à la maintenance prévisionnelle de parcs éoliens.
MOTS-CLÉS
diagnostic de défauts turbine éolienne maintenance conditionnelle maintenance prévisionnelle
KEYWORDS
fault diagnosis | wind turbine | conditional maintenance | predictive maintenance
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Ressources énergétiques et stockage > Énergies renouvelables intermittentes > Systèmes de surveillance de défauts pour la maintenance prévisionnelle de parcs de turbines éoliennes > Systèmes de production d’énergie éolienne
Cet article fait partie de l’offre
Maintenance
(76 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Systèmes de production d’énergie éolienne
L’énergie éolienne est l’énergie en provenance du vent captée par des éoliennes et transformée en énergie électrique. La production d’énergie éolienne se développe rapidement grâce aux progrès technologiques et aux réglementations incitant à réduire les émissions de gaz à effet de serre et l’utilisation des sources d’énergie fossile.
Les éoliennes sont le plus souvent rassemblées dans un « parc éolien » ou une « ferme éolienne » terrestre (onshore) ou en mer (offshore). L’éolienne terrestre est fixée dans le sol tandis que l’éolienne en mer est ancrée au fond de la mer dans des zones où la profondeur ne dépasse pas 40 m. Cependant, les éoliennes en mer peuvent être installées loin des côtes (farshore) sur des bases flottantes. Ces éoliennes flottantes sont encore en phase de développement. Elles peuvent avoir deux modes d’exploitation : mode d’exploitation industrielle et mode d’exploitation domestique. Le mode d’exploitation industrielle correspond à l’utilisation des éoliennes de puissance importante (supérieure à 2 MW pour l’éolienne terrestre et supérieure à 5 MW pour l’éolienne en mer) et de grande hauteur de mât (supérieure à 120 m) reliée au réseau électrique. Le mode d’exploitation domestique, quant à lui, correspond à l’utilisation des éoliennes de faible puissance (jusqu’à 50 kW) et hauteur du mât inférieure à 35 m. Les éoliennes domestiques (installées sur les toits d’immeubles) peuvent alimenter des bâtiments isolés non reliés au réseau afin de diminuer la dépendance des consommateurs à ce réseau ou bien être raccordées au réseau afin de revendre la production.
Les éoliennes en mer se développent beaucoup plus vite que les éoliennes terrestres parce qu’elles permettent d’obtenir une production plus régulière et plus importante. Cela est dû au fait que les vents sont beaucoup plus puissants au large des côtes que sur les côtes. C’est pourquoi le rendement effectif des parcs en mer est bien supérieur (environ deux fois supérieur) à celui des parcs terrestres.
Le rendement effectif d’une éolienne (capacity factor) est l’énergie effective produite par an divisée...
Cet article fait partie de l’offre
Maintenance
(76 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Systèmes de production d’énergie éolienne
BIBLIOGRAPHIE
-
(1) - JACOBSEN (H.) - Denmark breaks its own world record in wind energy, - Euractiv.com http://www.euractiv.com/section/climate-environment/news/denmark-breaks-its-own-world-record-in-wind-energy/
-
(2) - LIU (W.Y.), TANG (B.P.), HAN (J.G.), LU (X.N.), HU (N.N.), HE (Z.Z.) - The structure healthy condition monitoring and fault diagnosis methods in wind turbines : A review. - Renewable and Sustainable Energy Reviews, 44, 466-472 (2015).
-
(3) - AHMAD (R.), KAMARUDDIN (S.) - An overview of time-based and condition-based maintenance in industrial application. - Computers & Industrial Engineering, 63(1), 135-149 (2012).
-
(4) - YANG (W.), TAVNER (P.J.), CRABTREE (C.J.), FENG (Y.), QIU (Y.) - Wind turbine condition monitoring : technical and commercial challenges. - Wind Energy, 17(5), 673-693 (2014).
-
(5) - DAS (S.), KARNIK (N.), SANTOSO (S.) - Time-domain modeling of tower shadow and wind shear in wind turbines. - ISRN Renewable Energy, (2011).
-
...
Cet article fait partie de l’offre
Maintenance
(76 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive