Présentation
EnglishRÉSUMÉ
Dans cet article, le principe général des méthodes de diagnostic des défauts des éoliennes sera présenté. Ensuite, les méthodes de diagnostic des défauts des éoliennes les plus connues de la littérature seront étudiées et comparées en utilisant plusieurs exemples. L’objectif est de montrer leur capacité à répondre aux défis liés au développement et à l’implémentation d’un système d’aide à la maintenance prévisionnelle de parcs éoliens.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Moamar SAYED MOUCHAWEH : Professeur de l’Institut Mines-Télécom - IMT Lille Douai, Douai, France
INTRODUCTION
Les États membres de la Commission européenne ont pris l’engagement de réduire d’ici à 2020 la consommation d’énergie primaire de 20 %. Afin d’atteindre cet objectif, il est devenu indispensable de développer et d’intégrer des sources d’énergie renouvelable (SER), en particulier les sources éoliennes, dans les réseaux de production usuels en veillant à garantir deux objectifs :
-
accroître la production des SER, en particulier les parcs éoliens, en augmentant leur disponibilité et leur fiabilité ;
-
diminuer les coûts de production en réduisant les coûts de maintenance et limitant les conséquences de défauts affectant le fonctionnement normal des composants des SER.
Afin de pouvoir atteindre ces deux objectifs, il est indispensable d’équiper les éoliennes d’outils de surveillance efficaces permettant de détecter de manière précoce et fiable l’apparition de défauts et d’estimer leur criticité et durée de vie restante afin de réaliser des ajustements ou des réparations au plus tôt et à moindre coût.
Le diagnostic de défauts des éoliennes est une tâche très difficile à réaliser, notamment à cause de la forte variabilité de la vitesse du vent et des turbulences autour du plan du rotor, la non-linéarité de la dynamique des éoliennes, l’apparition de certains défauts (par exemple, les défauts des actionneurs de pivotement de l’angle de calage des pales) dans des conditions de fonctionnement (région d’optimisation de la puissance) où les conséquences de ces défauts sont cachées, les actions de la commande qui compensent les effets de défauts et le faible volume de données décrivant les défauts par rapport aux données de fonctionnement normal.
Il existe de nombreuses méthodes de diagnostic de défauts des éoliennes dans la littérature. Ces méthodes sont fondées sur l’utilisation d’un modèle caractérisant les modes ou les comportements, de fonctionnement normal et/ou défaillant. En général, ces méthodes peuvent être classées en deux catégories principales : les méthodes à base de modèle analytique et les méthodes à base de traitement du signal et d’intelligence artificielle. Dans la première classe, un modèle mathématique ou analytique (quantitatif et/ou qualitatif) est construit en utilisant une connaissance a priori sur la dynamique et/ou la structure du système. Dans la deuxième classe, le modèle est construit par apprentissage en utilisant un ensemble de données sur le comportement du système. Les approches appartenant à ces deux catégories ont leurs avantages et inconvénients selon la connaissance disponible sur le comportement du système, sa complexité, le mécanisme d’apparition des défauts et leur dynamique de développement.
Dans cet article, le principe général des méthodes de diagnostic de défauts des éoliennes sera présenté. Ensuite, les méthodes de diagnostic de défauts des éoliennes les plus connues de la littérature seront étudiées et comparées en utilisant plusieurs exemples. L’objectif est de montrer leur capacité à répondre aux défis liés au développement et à l’implémentation d’un système d’aide à la maintenance prévisionnelle de parcs éoliens.
MOTS-CLÉS
diagnostic de défauts turbine éolienne maintenance conditionnelle maintenance prévisionnelle
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Ressources énergétiques et stockage > Énergies renouvelables intermittentes > Systèmes de surveillance de défauts pour la maintenance prévisionnelle de parcs de turbines éoliennes > Bilan des méthodes présentées et discussion
Cet article fait partie de l’offre
Maintenance
(76 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Bilan des méthodes présentées et discussion
Une éolienne est composée de plusieurs sous-systèmes ou composants comme le système de calage des pales, la boîte de vitesse (multiplicatrice), la génératrice et le convertisseur de puissance. Les défauts qui se produisent dans ces composants ont un impact significatif sur la disponibilité et le coût de maintenance des éoliennes. De plus, les défauts dans ces composants produisent une grande quantité d’alarmes dans le centre de contrôle. Cela augmente la tâche mentale des opérateurs humains de supervision afin d’analyser un grand nombre d’alarmes. Par conséquent, le diagnostic précoce et fiable des défauts de ces composants critiques peut améliorer considérablement la disponibilité des éoliennes et réduire leurs coûts de maintenance.
Dans cet article, les méthodes de diagnostic de défauts pour l’aide à la maintenance prévisionnelle des éoliennes ont été divisées en deux grandes catégories : les méthodes sans modèle et les méthodes à base de modèle. Les méthodes à base de modèle sont à leur tour divisées en deux catégories : méthodes à base de modèle analytique et méthodes à base d’intelligence artificielle. Les deux catégories de méthodes réalisent le diagnostic par une : 1) surveillance/analyse de performance (puissance générée), 2) surveillance/analyse thermique et 3) surveillance/analyse vibratoire. La figure 9 résume cette classification et le tableau 1 compare ces méthodes par rapport au retard de détection d’un défaut, à la précision de l’ isolement de la source de défaut, à la fiabilité de leur diagnostic (fausses alarmes et alarmes manquées) et à la simplicité et au coût de leur implémentation.
Bien que les méthodes à base de modèle aient été appliquées avec succès pour le diagnostic des éoliennes, elles présentent plusieurs inconvénients majeurs :
-
elles nécessitent des connaissances préalables et représentatives (données) sur tous les comportements de défauts ;
-
elles nécessitent une représentation discriminante ou un espace caractéristique sensible aux conditions normales de fonctionnement d’une éolienne et chacun des comportements défectueux et…
-
…...
Cet article fait partie de l’offre
Maintenance
(76 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Bilan des méthodes présentées et discussion
BIBLIOGRAPHIE
-
(1) - JACOBSEN (H.) - Denmark breaks its own world record in wind energy, - Euractiv.com http://www.euractiv.com/section/climate-environment/news/denmark-breaks-its-own-world-record-in-wind-energy/
-
(2) - LIU (W.Y.), TANG (B.P.), HAN (J.G.), LU (X.N.), HU (N.N.), HE (Z.Z.) - The structure healthy condition monitoring and fault diagnosis methods in wind turbines : A review. - Renewable and Sustainable Energy Reviews, 44, 466-472 (2015).
-
(3) - AHMAD (R.), KAMARUDDIN (S.) - An overview of time-based and condition-based maintenance in industrial application. - Computers & Industrial Engineering, 63(1), 135-149 (2012).
-
(4) - YANG (W.), TAVNER (P.J.), CRABTREE (C.J.), FENG (Y.), QIU (Y.) - Wind turbine condition monitoring : technical and commercial challenges. - Wind Energy, 17(5), 673-693 (2014).
-
(5) - DAS (S.), KARNIK (N.), SANTOSO (S.) - Time-domain modeling of tower shadow and wind shear in wind turbines. - ISRN Renewable Energy, (2011).
-
...
Cet article fait partie de l’offre
Maintenance
(76 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive