Présentation
EnglishAuteur(s)
-
Gérard ANTONINI : Professeur des universités - Université de technologie de Compiègne (UTC)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Dans une première partie du document [BE 8 255], on a présenté les principales caractéristiques des solides divisés, leur classification, et les différents régimes de fluidisation gaz-solide accessibles. On a fourni un ensemble de données concernant les caractéristiques des lits fluidisés denses et circulants, et celles des dispositifs auxiliaires nécessaires au bon fonctionnement de ces technologies. Les performances des lits fluidisés en tant que mélangeurs gaz-solide et solide-solide ont également été abordées.
On a décrit ensuite les différentes applications possibles des lits fluidisés.
Des échanges de masse et de chaleur peuvent y être réalisés avec une grande efficacité, par contact direct entre le solide divisé, de grande surface spécifique, et le gaz de fluidisation, ou entre le lit et la paroi d'un échangeur immergé. La couche fluidisée constitue un volume ouvert, pratiquement isotherme, du fait de la forte capacité thermique des solides par rapport à celle des gaz, ainsi que de l'agitation particulaire et du brassage hydrodynamique permettant le renouvellement des surfaces de contact gaz-particule et lit-paroi.
Cette deuxième partie sera consacrée à la description des processus de transferts de masse et de chaleur en lit fluidisé. Les principales corrélations permettant d'estimer les coefficients de transfert gaz-particule, particule-lit et lit-paroi sont fournies. On applique ces données au calcul des transferts dans le cadre de nombreux dispositifs tels que des échangeurs ouverts mono ou multiétagés, des sécheurs ou des chaudières à lits fluidisés.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Transferts couplés de masse et de chaleur en lit fluidisé ouvert
Ces opérations concernent le séchage ou la désorption thermique d'un solide divisé, en continu, à l'aide d'un lit fluidisé dense ouvert.
Soit x la fraction massique de liquide (eau ou solvant) présente, à un instant donné, dans le matériau. En séchage, x désigne l'humidité d'un matériau de masse m 0 :
avec :
- me :
- masse d'eau (ou de solvant) contenue dans le matériau.
En supposant le matériau sous forme d'un milieu granulaire, constitué de particules de diamètre moyen d p et de masse volumique ρ s, alors l'évolution de l'humidité d'une particule, au cours du temps, est donnée par :
avec :
- LV :
- chaleur latente de vaporisation de l'eau ou du solvant, à la pression considérée (J/kg),
- hp :
- coefficient de transfert externe gaz-particule,
- Tev :
- température extérieure au grain,
- Tp :
- température moyenne de la particule, supposée constante lors du changement de phase liquide-vapeur, supposé lui à vitesse constante.
Alors, on a :
avec :
- x(0) :
- humidité initiale du matériau.
Le temps caractéristique de séchage/désorption complet...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Transferts couplés de masse et de chaleur en lit fluidisé ouvert
BIBLIOGRAPHIE
-
(1) - GONZO (E.E.) - * - Chem. Eng. J., 90, p. 299 (2002).
-
(2) - MOLERUS (O.) - * - Int. J. Heat Mass Transfer, 40, p. 4151 (1997).
-
(3) - SCHLÜNDER (E.U.) - * - Chem. Engng. and Processing, 18, p. 97 (1984).
-
(4) - YATES (J.G.) - * - Chem. Eng. Sc., 51, p. 167 (1996).
-
(5) - RANZ (W.E.), MARSHALL (W.R.) - * - Phys. Fluids, 27, p. 141 (1952).
-
(6) - COLLIER (A.P.), HAYHURST (A.N.), RICHARDSON (J.L.), SCOTT (S.A.) - * - Chem. Eng. Sci., 59, p. 4613 (2004).
-
(7) - PRINS (W.) - * - Ph.D Thesis, Twente University,...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive