Article de référence | Réf : BE8256 v1

Transfert thermique en lit fluidisé circulant
Lits fluidisés - Transferts de masse et de chaleur

Auteur(s) : Gérard ANTONINI

Date de publication : 10 oct. 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Gérard ANTONINI : Professeur des universités - Université de technologie de Compiègne (UTC)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Dans une première partie du document [BE 8 255], on a présenté les principales caractéristiques des solides divisés, leur classification, et les différents régimes de fluidisation gaz-solide accessibles. On a fourni un ensemble de données concernant les caractéristiques des lits fluidisés denses et circulants, et celles des dispositifs auxiliaires nécessaires au bon fonctionnement de ces technologies. Les performances des lits fluidisés en tant que mélangeurs gaz-solide et solide-solide ont également été abordées.

On a décrit ensuite les différentes applications possibles des lits fluidisés.

Des échanges de masse et de chaleur peuvent y être réalisés avec une grande efficacité, par contact direct entre le solide divisé, de grande surface spécifique, et le gaz de fluidisation, ou entre le lit et la paroi d'un échangeur immergé. La couche fluidisée constitue un volume ouvert, pratiquement isotherme, du fait de la forte capacité thermique des solides par rapport à celle des gaz, ainsi que de l'agitation particulaire et du brassage hydrodynamique permettant le renouvellement des surfaces de contact gaz-particule et lit-paroi.

Cette deuxième partie sera consacrée à la description des processus de transferts de masse et de chaleur en lit fluidisé. Les principales corrélations permettant d'estimer les coefficients de transfert gaz-particule, particule-lit et lit-paroi sont fournies. On applique ces données au calcul des transferts dans le cadre de nombreux dispositifs tels que des échangeurs ouverts mono ou multiétagés, des sécheurs ou des chaudières à lits fluidisés.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be8256


Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

4. Transfert thermique en lit fluidisé circulant

Le transfert thermique en lit fluidisé circulant est réalisé soit au niveau des parois verticales du riser par des surfaces tubées (paroi membrane), soit par des échangeurs tubulaires ou platulaires disposés verticalement en partie haute du riser, soit enfin en lit extérieur, disposé sur le circuit de retour du solide (jambe externe). Ces lits extérieurs sont des lits denses, en régime bouillonnant.

On va préciser ici les coefficients de transfert accessibles en paroi verticale (membrane wall) et en échangeur tubulaire immergés dans le cœur du riser.

Les coefficients de transfert associés s'avèrent essentiellement dépendant de la concentration volumique locale de solides divisés au niveau de la surface d'échange.

On considère, en première approximation, que la masse volumique apparente de la suspension gaz-solide décroît entre la zone diluée, située en partie haute du lit, et la zone dense, en partie basse. La masse volumique ρ sus de la suspension, à la hauteur H, peut être déterminée par la mesure de la perte de charge entre deux capteurs placés respectivement à la hauteur H et H + ΔH :

( 48 )

La répartition verticale de cette masse volumique apparente de la suspension a été déterminée sur plusieurs chaudières à combustion en lit fluidisé circulant, d'une puissance électrique allant de 12 à 125 MW , et ce, en fonction de la coordonnée verticale z, distance verticale comptée à partir de la dernière injection d'air (air secondaire). La corrélation trouvée pour ρ sus en (kg/m3) s'écrit :

( 49 )

avec :

zm
 : 
hauteur du point médian du conduit de sortie du riser.

La répartition du coefficient de transfert peut alors être mesurée, ce qui conduit à :

Alors le coefficient de transfert...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Transfert thermique en lit fluidisé circulant
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GONZO (E.E.) -   *  -  Chem. Eng. J., 90, p. 299 (2002).

  • (2) - MOLERUS (O.) -   *  -  Int. J. Heat Mass Transfer, 40, p. 4151 (1997).

  • (3) - SCHLÜNDER (E.U.) -   *  -  Chem. Engng. and Processing, 18, p. 97 (1984).

  • (4) - YATES (J.G.) -   *  -  Chem. Eng. Sc., 51, p. 167 (1996).

  • (5) - RANZ (W.E.), MARSHALL (W.R.) -   *  -  Phys. Fluids, 27, p. 141 (1952).

  • (6) - COLLIER (A.P.), HAYHURST (A.N.), RICHARDSON (J.L.), SCOTT (S.A.) -   *  -  Chem. Eng. Sci., 59, p. 4613 (2004).

  • (7) - PRINS (W.) -   *  -  Ph.D Thesis, Twente University,...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS