Présentation

Article

1 - MODÉLISATION DES LIGNES ET DES CÂBLES

2 - ÉTUDE D’UN CIRCUIT À CONSTANTES RÉPARTIES

3 - CONDUCTEURS EN PRÉSENCE D’UN CYLINDRE EN MATÉRIAU MAGNÉTIQUE

Article de référence | Réf : D1100 v1

Étude d’un circuit à constantes réparties
Réseaux électriques linéaires à constantes réparties

Auteur(s) : Pierre ESCANÉ, Jean-Marie ESCANÉ

Relu et validé le 18 mai 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

L’étude des réseaux d’énergie à constantes localisées résulte d’une approximation d’autant moins valable que la fréquence des sources d’alimentation est élevée. Cette approximation n’est plus utilisable dans le cas des réseaux de transport d’énergie électrique qui sont constitués de lignes aériennes de grandes longueurs ou de câbles enterrés, alimentés à une fréquence de 50 Hz.

Cependant, l’efficacité des méthodes utilisées pour l’étude des différents réseaux à constantes localisées incite à chercher, dans le cas de réseaux à constantes réparties, une modélisation faisant appel à des éléments localisés.

Considérons une ligne monophasée, composée de deux conducteurs AC et BD (figure 1), alimentée par une source S et chargée par une charge Ch.

Les conducteurs dont est composée la ligne étant résistifs, ils sont le siège de pertes par effet Joule. L’ensemble constitue une grande boucle ; il y a donc de l’énergie magnétique emmagasinée. Par ailleurs, les deux conducteurs sont isolés l’un de l’autre. Il y a donc transversalement un effet capacitif et éventuellement résistif. Tous ces effets sont uniformément répartis le long de la ligne.

L’objectif de l’article est de présenter une modélisation générale pour un ensemble de n conducteurs, d’indiquer comment on peut déterminer les différents paramètres en fonction de la géométrie de chacun des conducteurs, de s’intéresser à l’exploitation du modèle obtenu et, enfin, de l’étendre au cas délicat où les matériaux longent un cylindre en matériau magnétique.

Nota :

cet article est inspiré de l’ouvrage « Réseaux d’énergie électrique. Modélisation : lignes, câbles » écrit par J.-M. Escané, référencé en dans la bibliographie. Le lecteur pourra y trouver les calculs conduisant aux différents résultats ainsi que des compléments et de nombreux exercices et études de cas.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d1100


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Étude d’un circuit à constantes réparties

2.1 Lignes triphasées symétriques équilibrées. Équations fondamentales

L’objectif visé dans ce paragraphe est le transfert d’énergie électrique entre deux positions le long de la ligne. Les conventions de signes sont celles de la figure 27.

La tension v (x,t ) et le courant i (x,t ) sont des fonctions de l’abscisse x, comptée positivement de la sortie vers l’entrée, et du temps t.

Une ligne triphasée avec conducteur de retour (terre ou conducteur neutre) pourra être représentée conformément à la figure 28.

Pour un tronçon de longueur unité (Δx = 1), on peut donc écrire l’ensemble des équations ( k = 1, 2, 3) :

v kn x = R n i n L n i n t j=1 M jn i j t + R k i k + L k i k t + ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Étude d’un circuit à constantes réparties
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ESCANÉ (J.-M.) -   Réseaux d’énergie électrique - Modélisation : lignes, câbles,  -  Eyrolles 1997.

  • (2) - DURAND -   Électrostatique  -  , 3 tomes, Masson 1964, 1966.

  • (3) - DURAND -   Magnétostatique,  -  Masson 1968.

  • (4) - AGUET (M.), MORF (J.-J.) -   Énergie électrique,  -  Dunod 1987.

  • (5) - CARSON -   Wave propagation in overhead wires with ground return,  -  Bell system technical journal, Vol. 5, 1926.

  • (6) - CARSON -   Propagation of periodic currents over a system of parallel wires,  -  Bell system technical journal, Vol. 6, jul 1926.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS