Présentation

Article

1 - LES PRINCIPAUX TYPES DE FOUR

  • 1.1 - Fours de fusion
  • 1.2 - Fours de poche
  • 1.3 - Fours de réduction

2 - FONCTIONNEMENT SOMMAIRE DES FOURS DE FUSION

3 - LE SCINTILLEMENT OU FLICKER

4 - SOLUTIONS POUR RÉDUIRE LE FLICKER

5 - LE FILTRAGE

6 - CONCLUSION

7 - GLOSSAIRE

Article de référence | Réf : D4319 v1

Glossaire
Flicker engendré par les fours à arc

Auteur(s) : Jacques COURAULT

Date de publication : 10 juil. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Jacques COURAULT : Ancien directeur des développements en électronique de puissance - Alstom Power Conversion, France

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Dans l’industrie bien des procédés sont générateurs de perturbations sur les réseaux de distribution des gros sites de production. Ces réseaux doivent répondre à des normes bien définies pour garantir le bon fonctionnement des appareils raccordés et le confort des utilisateurs. Les réseaux sont perturbés, soit du fait du procédé lui-même, soit du fait des actionneurs statiques qui alimentent lesdits procédés.

Une distinction doit être faite entre les différents pollueurs en fonction du mode d’alimentation : certains procédés sont alimentés en direct par le réseau, d’autres nécessitent des convertisseurs… Les laminoirs, les grosses machines à souder et certains fours à arc, dits à courant continu, ne sont pas raccordés directement sur le réseau, des convertisseurs alternatif/continu, à thyristors ou IGBT assurent l’interface. L’intérêt de ces convertisseurs c’est le contrôle du courant, qui est d’autant plus efficace que l’actionneur est rapide : à titre d’exemple, un pont de Graëtz triphasé, à thyristors, peut répondre en une arche, soit 3,3 ms sur un réseau à 50 Hz. Un pont de Graëtz est dit convertisseur direct, c’est avec la commutation naturelle des thyristors, que l’on passe du réseau à la tension continue. Les convertisseurs dits indirects comportent un convertisseur réseau de type Graëtz, un élément de stockage, généralement un condensateur, et un convertisseur de sortie avec des composants blocables par la commande de type GTO ou IGBT capables de fonctionner avec des fréquences de découpage largement supérieures à celle du réseau, donc pour la charge le temps de réponse est beaucoup plus court que celui d’un simple pont de Graëtz à thyristors.

C’est ainsi que, depuis une dizaine d’années, les procédés dont la puissance est inférieure à 10 MW sont alimentés par des convertisseurs indirects à IGBT, c’est en particulier le cas pour les gros laminoirs, les bloomings. Quand on utilisait pour les alimenter des convertisseurs directs à thyristors, du fait des variations de puissance réactive, les bloomings perturbaient les réseaux, mais les perturbations étaient équilibrées sur les trois phases, d’où le recours à des statocompensateurs ou SVC assez simples. Avec les fours à arc alternatifs dont la puissance peut dépasser les 100 MW, on a, en phase de fusion, des courts-circuits monophasés, dont les effets sur le réseau sont beaucoup plus délicats à limiter. À ce niveau de puissance, il n’est pas encore réaliste d’envisager des alimentations avec des convertisseurs indirects, mais il existe des fours, dits à courant continu, alimentés par des convertisseurs directs à thyristors, sur la base de ponts de Graëtz avec quelques évolutions topologiques destinées à réduire les variations de puissance réactive qui sont majoritairement responsables des perturbations sur les réseaux. Cela dit, surtout en début de fusion, même avec des fours à courant continu, les ruptures d’arc sont fréquentes, et du fait de la conversion directe, elles sont perçues par les réseaux…

L’objet de cet article est d’évaluer les perturbations engendrées par les fours à arc sur les réseaux de distribution et d’envisager les dispositifs de correction.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d4319


Cet article fait partie de l’offre

Réseaux électriques et applications

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

7. Glossaire

AC, DC, AC/AC, AC/DC, DC/AC

AC courant alternatif de l’anglais Alternating Current ; DC courant continu de l’anglais Direct Current ; AC/DC conversion alternatif/continu ; DC/AC conversion continu/alternatif ; AC/AC conversion alternatif/alternatif, généralement entre réseaux asynchrones ou à des fréquences différentes.

Fréquence fondamentale

Souvent on appelle fondamental la fréquence du réseau de distribution de l’énergie. Pour tenir compte des convertisseurs à fréquence variable, c’est la fréquence à partir de laquelle on transmet une puissance (exemple simple, les motorisations).

Fréquence harmonique

Fréquence, multiple entier, de la fréquence fondamentale.

Fréquence interharmonique

N’importe quelle fréquence qui n’est pas multiple entier de la fréquence fondamentale.

Statocompensateur, SVC

Dispositif de compensation dynamique, il comprend des condensateurs et un TCR, globalement, c’est une puissance réactive continument variable. Le terme anglophone SVC décrit la même chose Static VAR Controller.

TCR (Thyristor-Controlled Reactor)

Contrôle du courant dans les réactances.

TSC (Thyristor-Switched Capacitor)

Enclenchement statique des condensateurs

HVDC (High Voltage Direct Current)

Transmission de l’énergie électrique en courant continu.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux électriques et applications

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - POSTIGLIONE (G.) -   Nouvelle alimentation pour les fours à arc alternatifs.  -  Thèse, Institut National Polytechnique de Toulouse (2006).

  • (2) - GOLLENTZ (B.) -   Étude et maîtrise du flicker engendré par les fours à arc de sidérurgie.  -  Thèse, Université de Franche-Comté.

  • (3) - HINGORANI (N.G.), GYUGYI (L.) -   Understanding facts.  -  IEEE Press.

  • (4) - MATHUR (R.M.), VARMA (R.) -   Thyristor-based facts controllers for electrical transmission systems.  -  IEEE Press.

  • (5) - COURAULT (J.) -   Aperçu du fonctionnement des fours à arc.  -  Revue 3EI, n° 95 (2019).

  • (6) - COURAULT (J.) -   Perturbations engendrées sur les réseaux par les fours à arc....

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux électriques et applications

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS