Présentation

Article

1 - PRINCIPE DE BASE ET STRUCTURES DES TRANSISTORS MOS

2 - FONCTIONNEMENT DU TRANSISTOR IDÉAL

3 - EFFETS CORRECTEURS

4 - ARCHITECTURES DES PROCÉDÉS ET DES DISPOSITIFS MOS

5 - PERSPECTIVE DU DÉVELOPPEMENT DU TRANSISTOR MOS

Article de référence | Réf : E2430 v2

Perspective du développement du transistor MOS
Transistor MOS et sa technologie de fabrication

Auteur(s) : Thomas SKOTNICKI

Date de publication : 10 févr. 2000

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Thomas SKOTNICKI : Docteur en microélectronique - Ingénieur de recherche à France Télécom - Centre national d’études des télécommunications (CNET) de Grenoble - Ingénieur ST Microelectronics

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le transistor MOS est, de loin, le dispositif le plus répandu dans la production actuelle de composants semi-conducteurs, car il est le composant de base de la technologie CMOS (Complementary MOS), qui, à elle seule, englobe plus de 70 % de la production mondiale de circuits intégrés.

Plusieurs sigles plus ou moins justifiés sont utilisés dans la littérature pour décrire le transistor MOS (Metal Oxide Semiconductor) : MOSFET (MOS Field Effect Transistor), IGFET (Insulated Gate Field Effect Transistor) et MOST (Metal Oxide Semiconductor Transistor).

Le transistor MOSFET se caractérise par le fait que la grille, par l’effet de champ électrique, contrôle à travers l’oxyde de grille la densité de porteurs dans le canal du dispositif et ainsi l’intensité du courant dans le canal. Le canal est relié de part et d’autre à deux régions fortement dopées entre lesquelles est appliquée une tension donnant lieu à la circulation du courant. Ce transistor n’est qu’un élément d’une famille plus vaste de composants dits FET (Field Effect Transistor) utilisant l’effet de champ pour moduler l’intensité du courant dans un canal. En fait, on distingue trois groupes dans la famille des FET :

  • le IGFET, dont l’effet de champ provient d’une grille isolée du canal par un diélectrique mince ; actuellement, le diélectrique utilisé presque exclusivement, est l’oxyde SiO2 d’où la dénomination MOSFET ; cependant il faut remarquer que d’autres diélectriques, comme Si3N4, un empilement SiO2/Si3N4 ou un empilement SiO2/Ta2O5, peuvent aussi être utilisés ;

  • le JFET (Junction FET), dont l’effet de champ provient d’une jonction PN polarisée en inverse ; si la région P est la grille, elle module l’épaisseur du canal (région N) et, ainsi, son courant par l’extension de la zone de charge d’espace sous l’effet de la polarisation inverse de la jonction ;

  • le MESFET (Metal Semiconductor FET), dont l’effet de champ provient d’une jonction Schottky (métal-semi-conducteur) polarisée en inverse, le fonctionnement de la grille métallique étant analogue à celui de la grille du JFET.

Dans cet article concernant le transistor MOS (IGFET ou MOSFET), nous aborderons son fonctionnement ainsi que la technologie de fabrication. Le fonctionnement est décrit suivant trois niveaux de difficulté :

  • un niveau qualitatif, permettant d’acquérir une bonne intuition du principe de fonctionnement du transistor ;

  • un niveau « modèle simplifié », permettant de décrire le fonctionnement d’un transistor idéal ;

  • un niveau « modèle complet », permettant de comprendre tous les effets parasites, ainsi que ceux dits secondaires, et d’analyser leur impact sur les caractéristiques du transistor.

La partie technologique montre l’intérêt de tous les éléments de l’architecture du transistor et de leurs modes de réalisation technologique. Différentes architectures de transistors (par exemple, à canal surfacique, à canal enterré, à canal à hétérostructure, etc.) sont détaillées, ainsi que l’assemblage d’une technologie complète.

Nota :

Le fonctionnement et l’architecture des principaux types de circuits CMOS logiques, ainsi que les problèmes relatifs à l’intégration des circuits sur une puce de silicium sont présentés dans l’article Circuits intégrés CMOS sur silicium

Voir en fin d’article les tableaux Abréviations et Notations et symboles.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-e2430


Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

5. Perspective du développement du transistor MOS

Depuis plus de 30 ans, la miniaturisation du transistor MOS est guidée par un jeu très simple de « règles de réduction d’échelle » proposées par Dennard (1967) et qui se basent sur l’observation fondamentale que les dimensions du transistor peuvent être diminuées sans compromettre ses caractéristiques électriques.

Plus précisément, ces règles prévoient la conservation de ce qu’on appelle aujourd’hui l’intégrité électrostatique du transistor (il s’agit principalement, de la conservation des champs électrostatiques internes et ainsi du maintien du contrôle des effets de petites dimensions) lorsqu’une réduction de toutes les dimensions du dispositif (L, W, Tox, xJ) par un facteur k est accompagnée par une réduction de la tension d’alimentation et une augmentation de la concentration de dopants dans le canal par le même facteur k.

  • Les bénéfices d’une telle stratégie en termes de performances, comme le prévoit la théorie de Dennard, sont simples :

    • maintien du niveau de courant par unité de largeur du transistor (Ion/W ) ;

    • réduction de la puissance consommée d’un facteur k 2 ;

    • réduction du délai par porte d’un facteur k ;

    • réduction du facteur de mérite de puissance par délai d’un facteur k 3 ;

    • augmentation de la densité de l’intégration (transistors/cm2) d’un facteur k 2.

Il est à remarquer que, jusqu’à la génération CMOS 0,5 µm, les tensions d’alimentation échappaient à la réduction (pour cause de la compatibilité avec les circuits TTL) ; cette petite dérogation était compensée par une augmentation plus rapide du niveau de dopage, avec un facteur k 2 au lieu de k. Pour toutes les générations ultérieures, les règles de Dennard sont suivies presque à la lettre, et ce qui est le plus impressionnant est que les bénéfices prédits par sa théorie le sont aussi.

  • La partie « historique » du tableau 3 illustre le suivi des règles...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Perspective du développement du transistor MOS
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CAND (M.), DEMOULIN (J.-L.), LARDY, SENN (P.) -   Conception des circuits intégrés MOS,  -  Éditions Eyrolles et CNET-ENST, 1986.

  • (2) - ARRORA (N.) -   MOSFET Models for VLSI Circuit Simulation.  -  Springer Verlag 1993.

  • (3) - COLINGE (J.-P.), VAN DE WIELE (F.) -   Physique des dispositifs semi-conducteurs.  -  De Bœck-Wesmael, 1996.

  • (4) - SZE (S.-M.) -   Physics of semiconductor devices,  -  J. Wiley & Sons, 1981.

  • (5) - GROVE (A.-S.) -   Physics and technology of semiconductor devices,  -  J. Wiley & Sons, 1967.

  • (6) - SKOTNICKI (T.), MERCKEL (G.), PEDRON (T.) -   A new punchthrough current model based on the Voltage-Doping Transformation.  -  IEEE Transaction on Electron Devices, pp. 1076-1086, July 1988.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS