Présentation
Auteur(s)
-
Thomas SKOTNICKI : Docteur en microélectronique - Ingénieur de recherche à France Télécom - Centre national d’études des télécommunications (CNET) de Grenoble - Ingénieur ST Microelectronics
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le transistor MOS est, de loin, le dispositif le plus répandu dans la production actuelle de composants semi-conducteurs, car il est le composant de base de la technologie CMOS (Complementary MOS), qui, à elle seule, englobe plus de 70 % de la production mondiale de circuits intégrés.
Plusieurs sigles plus ou moins justifiés sont utilisés dans la littérature pour décrire le transistor MOS (Metal Oxide Semiconductor) : MOSFET (MOS Field Effect Transistor), IGFET (Insulated Gate Field Effect Transistor) et MOST (Metal Oxide Semiconductor Transistor).
Le transistor MOSFET se caractérise par le fait que la grille, par l’effet de champ électrique, contrôle à travers l’oxyde de grille la densité de porteurs dans le canal du dispositif et ainsi l’intensité du courant dans le canal. Le canal est relié de part et d’autre à deux régions fortement dopées entre lesquelles est appliquée une tension donnant lieu à la circulation du courant. Ce transistor n’est qu’un élément d’une famille plus vaste de composants dits FET (Field Effect Transistor) utilisant l’effet de champ pour moduler l’intensité du courant dans un canal. En fait, on distingue trois groupes dans la famille des FET :
-
le IGFET, dont l’effet de champ provient d’une grille isolée du canal par un diélectrique mince ; actuellement, le diélectrique utilisé presque exclusivement, est l’oxyde SiO2 d’où la dénomination MOSFET ; cependant il faut remarquer que d’autres diélectriques, comme Si3N4, un empilement SiO2/Si3N4 ou un empilement SiO2/Ta2O5, peuvent aussi être utilisés ;
-
le JFET (Junction FET), dont l’effet de champ provient d’une jonction PN polarisée en inverse ; si la région P est la grille, elle module l’épaisseur du canal (région N) et, ainsi, son courant par l’extension de la zone de charge d’espace sous l’effet de la polarisation inverse de la jonction ;
-
le MESFET (Metal Semiconductor FET), dont l’effet de champ provient d’une jonction Schottky (métal-semi-conducteur) polarisée en inverse, le fonctionnement de la grille métallique étant analogue à celui de la grille du JFET.
Dans cet article concernant le transistor MOS (IGFET ou MOSFET), nous aborderons son fonctionnement ainsi que la technologie de fabrication. Le fonctionnement est décrit suivant trois niveaux de difficulté :
-
un niveau qualitatif, permettant d’acquérir une bonne intuition du principe de fonctionnement du transistor ;
-
un niveau « modèle simplifié », permettant de décrire le fonctionnement d’un transistor idéal ;
-
un niveau « modèle complet », permettant de comprendre tous les effets parasites, ainsi que ceux dits secondaires, et d’analyser leur impact sur les caractéristiques du transistor.
La partie technologique montre l’intérêt de tous les éléments de l’architecture du transistor et de leurs modes de réalisation technologique. Différentes architectures de transistors (par exemple, à canal surfacique, à canal enterré, à canal à hétérostructure, etc.) sont détaillées, ainsi que l’assemblage d’une technologie complète.
Le fonctionnement et l’architecture des principaux types de circuits CMOS logiques, ainsi que les problèmes relatifs à l’intégration des circuits sur une puce de silicium sont présentés dans l’article Circuits intégrés CMOS sur silicium
Voir en fin d’article les tableaux Abréviations et Notations et symboles.
VERSIONS
- Version archivée 1 de sept. 1987 par René MICOLET
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Architectures des procédés et des dispositifs MOS
Souvent, les mêmes modules technologiques peuvent être utilisés aussi bien dans les technologies MOS que BiCMOS (technologie mixte : bipolaire intégré avec CMOS). L’ensemble des modules ainsi que leur enchaînement dans le procédé de fabrication constituent ce que l’on appelle l’architecture d’une technologie. En décrivant l’architecture, nous analyserons les modules technologiques, mais nous ne descendrons pas au niveau des recettes chimiques, des problèmes des matériaux et équipements technologiques relatifs à la fabrication de ces modules ; cela est en dehors du champ de cet article.
Parfois, on parle aussi de l’architecture du transistor ; dans ce contexte, le mot architecture a une signification tout à fait équivalente à ce qu’on sous-entend par architecture lorsque l’on parle d’édifices ou de constructions. Pour un édifice, l’architecture de toit ou de fenêtres définit sa forme, ses proportions, etc. ; pour un transistor, l’architecture du canal, par exemple, définit le profil et les types de dopants ou, éventuellement, l’empilement des couches si le canal n’est pas homogène, etc.
Dans ce paragraphe 4, nous allons décrire, d’une manière simplifiée, les modules technologiques et architecturaux. Ensuite, les architectures complètes des technologies CMOS sur substrat massif ou sur SOI (§ 4.2 et 4.3) seront présentées.
4.1 Modules architecturaux
L’enchaînement des procédés de dépôt, d’oxydation, de photo-lithographie, de gravure, d’épitaxie, d’implantation ionique, de recuits, etc. permet de créer, dans le substrat, une mosaïque de zones et d’empilements qui constituent ce qu’on appelle un circuit intégré sur silicium. Afin de s’affranchir de la grande complexité d’une technologie complète, nous allons d’abord présenter les modules architecturaux, leur fabrication et leur rôle dans la technologie...
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Architectures des procédés et des dispositifs MOS
BIBLIOGRAPHIE
-
(1) - CAND (M.), DEMOULIN (J.-L.), LARDY, SENN (P.) - Conception des circuits intégrés MOS, - Éditions Eyrolles et CNET-ENST, 1986.
-
(2) - ARRORA (N.) - MOSFET Models for VLSI Circuit Simulation. - Springer Verlag 1993.
-
(3) - COLINGE (J.-P.), VAN DE WIELE (F.) - Physique des dispositifs semi-conducteurs. - De Bœck-Wesmael, 1996.
-
(4) - SZE (S.-M.) - Physics of semiconductor devices, - J. Wiley & Sons, 1981.
-
(5) - GROVE (A.-S.) - Physics and technology of semiconductor devices, - J. Wiley & Sons, 1967.
-
(6) - SKOTNICKI (T.), MERCKEL (G.), PEDRON (T.) - A new punchthrough current model based on the Voltage-Doping Transformation. - IEEE Transaction on Electron Devices, pp. 1076-1086, July 1988.
-
...
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive