Présentation
EnglishRÉSUMÉ
Comprendre le fonctionnement des enzymes nécessite la connaissance de la structure stéréoélectronique de ces macromolécules biologiques formées de l’assemblage d’acides aminés. Les différentes techniques biochimiques et physico-chimiques mises en œuvre pour déterminer leur structure sont abordées. L’article comporte l’étude de trois enzymes aux caractéristiques structurales différentes : l’anhydrase carbonique, la glycogène phosphorylase et la protéase du virus de l’immunodéficience humaine (VIH).
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Serge KIRKIACHARIAN : Docteur ès-Sciences Physiques – Pharmacien - Professeur émérite de chimie thérapeutique de la faculté des sciences pharmaceutiques et biologiques de l’Université Paris Sud - Praticien hospitalier chef de service honoraire des hôpitaux de Paris, France
-
Julien DUMOND : Docteur en virologie enzymologie - Consultant en entreprises pharmaceutiques, Metz, France
INTRODUCTION
Les enzymes sont des protéines, le terme protéine vient du préfixe « proto- », qui signifie en premier, en relation avec l’importance de ces macromolécules biologiques dans toute matière vivante, et le fait qu’avant 1950 la plupart des scientifiques accordaient plus de crédit au paradigme des protéines à l’origine de la vie qu’à celui des acides nucléiques à la base du vivant.
Comme toutes les protéines, une enzyme est codée par au moins un gène. Sa structure est constituée par un enchaînement d’acides aminés qui prend une conformation précise dans l’espace, afin de permettre la réalisation d’une réaction chimique spécifique. L’enzyme est donc un polymère fonctionnel de plus de 50 à 100 acides aminés suivant la définition donnée à une protéine. Grâce à des ribosomes, elle est synthétisée au cours d’un processus de traduction initié dans le cytoplasme d’une cellule ou au niveau de la matrice mitochondriale à partir d’un ARNm (acide ribonucléique messager) contenant l’information génétique.
Les recherches fondamentales et appliquées aux enzymes sont très conséquentes dans des domaines variés. De nombreuses entreprises et laboratoires investissent beaucoup de moyens humains et financiers afin de caractériser ces catalyseurs et de les exploiter au mieux pour l’espèce humaine. Avant d’utiliser ou de cibler une enzyme, les protocoles de purification doivent être clairement établis, et la connaissance de sa structure et de ses propriétés physicochimiques totalement maîtrisées.
Les enzymes ont été étudiées tout d’abord pour leur implication dans le métabolisme du vivant. Il s’agissait dans ce premier temps de molécules facilement accessibles (issues de liquides ou d’organismes simples). Quand les processus de purification ont été améliorés, de nombreuses enzymes furent isolées, puis caractérisées. Leurs possibles applications par et pour l’être humain pouvaient alors être envisagées. À l’heure actuelle, on relève trois domaines majeurs d’applications industrielles ou de ciblage des enzymes, ils nécessitent la maîtrise de nombreux domaines connexes :
-
entreprises pharmaceutiques et cosmétiques pour lesquelles la conception de médicaments et produits de bien-être impose des connaissances en chimie organique, en modélisation moléculaire, en pharmacologie, en ADMEtox (administration, distribution, métabolisme, excrétion et toxicologie), en galénique… Notons que des entreprises de service pharmaceutique se sont développées ces trente dernières années pour proposer le panel le plus complet possible de tests enzymatiques (cinétiques) ou sur récepteurs (affinité et tests fonctionnels), afin d’accompagner les laboratoires pharmaceutiques dans leurs programmes de recherche ;
-
entreprises agro-alimentaires où la fabrication de produits destinés à la consommation implique la maîtrise de la microbiologie, de la biologie végétale, du métabolisme et du fonctionnement de bio-réacteurs… ;
-
entreprises liées à l’environnement dans l’optique de générer des produits écologiques dans les domaines des biocarburants, du papier et des détergents biologiques nécessitant des connaissances en biologie végétale, en microbiologie, en écologie et en métabolisme.
Cet article est consacré à la description des techniques mises en œuvre pour la détermination de la structure des enzymes.
Le lecteur trouvera en fin d’article un glossaire et un tableau des notations et des sigles utilisés.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(126 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Structure et fonction de trois enzymes
3.1 Enzymes monomériques ou multimériques : anhydrases carboniques
3.1.1 Généralités et structures
Les anhydrases carboniques (AC) sont des enzymes monomériques ou multimériques existant sous plusieurs formes. Chez les mammifères, les AC se présentent sous forme monomérique, alors que chez les plantes et les algues elles sont retrouvées sous forme multimérique. Au moins 15 types différents d’anhydrases sont retrouvées chez l’être humain. Elles sont classées en fonction de leur localisation. Les anhydrases carboniques 4, 6, 9, 10, 11, 12 et 14 sont sécrétées ou associées à la membrane. Les enzymes 1, 2, 3, 7, 8 et 13 sont cytosoliques. Finalement, les isoformes 5A et 5B sont mitochondriales, elles appartiennent à la famille des métalloenzymes qui possèdent un atome de zinc. Les structures primaires de ces enzymes sont constituées de 259 à 279 acides aminés pour celles trouvées dans la PDB, c’est-à-dire AC 2, 4, 13, 14. L’AC2 présente au niveau central une zone en feuillet béta et à sa périphérie des hélices alpha. Au niveau de la structure tertiaire, le métal est maintenu grâce à 3 résidus histidine (94, 96 et 119) au niveau des cycles imidazole. Le zinc correctement maintenu active une molécule d’eau, afin que cette dernière puisse attaquer une molécule de dioxyde de carbone. De nombreux résidus stabilisent indirectement les résidus histidine et le zinc lié à l’eau.
HAUT DE PAGE
Ces enzymes appartiennent à la famille des lyases, la réaction catalysée est la suivante :
La...
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(126 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Structure et fonction de trois enzymes
BIBLIOGRAPHIE
-
(1) - ELIEL (E.L.), WILEN (S.H.) - Stéréochimie des composés organiques. - Tec et Doc Lavoisier, Paris (1996).
-
(2) - Le BRIAND (N.), CASALEGNO (J.S.), ESCURET (V.), GAYMARD (A.), LINA (B.), OTTMANN (M.), FROBERT (E.) - La balance HA-NA des virus influenza A(H1N1). - Virologie (2016).
-
(3) - AL ALI (A.) - Le dosage des cytochromes P450 (CYPs) humains par spectrométrie de masse : applications en toxicologie. - Thèse soutenue en 2014 sous la direction de BEAUNE (P.), discipline : Médicaments et toxicologie, Université Paris V René Descartes, INSERM UMRS 1147 (2014).
-
(4) - Document DARBON (H.) - http://biologie.univ-mrs.fr/masterBBSG/images/pdf/structures%20secondaires.pdf (autorisation d’utilisation)
-
(5) - Document LEBLANC (B.) - http://biochimiedesproteines.espaceweb.usherbrooke.ca/2b.html (autorisation d’utilisation)
-
...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(126 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive