Présentation
EnglishRÉSUMÉ
Le logiciel Matlab® et l’environnement graphique interactif Simulink® sont particulièrement performants et adaptés à la résolution de problèmes d’automatique, notamment pour la modélisation et la simulation des systèmes dynamiques. Cet article base tout d’abord son approche de représentation d’un modèle sur deux exemples. Avant d’aborder l’analyse temporelle et fréquentielle des systèmes linéaires stationnaires, sont proposées plusieurs procédures d’identification paramétrique. Pour terminer, sont abordés les moyens à disposition pour réaliser la synthèse des systèmes bouclés (méthodes traditionnelles et méthodes avancées).
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Yassine HADDAB : Maître de conférences en automatique à l’ENSMM Besançon
-
Bernard LANG : Maître de conférences en automatique à l’ENSMM Besançon
-
Guillaume LAURENT : Maître de conférences en automatique à l’ENSMM Besançon
INTRODUCTION
De nombreux logiciels performants sont aujourd’hui à la disposition des ingénieurs et permettent de réaliser des études simples ou complexes de façon très conviviale. Le logiciel Matlab ® et son extension Simulink ® sont particulièrement bien adaptés pour appréhender des problèmes d’automatique, notamment pour réaliser l’analyse et la commande de systèmes modélisés par des équations différentielles ordinaires.
Après une brève introduction à Matlab ® et Simulink ®, nous utilisons certains outils disponibles pour représenter un modèle de comportement d’un système en illustrant la démarche à l’aide de deux exemples.
Des procédures d’identification du modèle sont proposées à travers l’utilisation de la boîte à outils System Identification avant d’aborder l’analyse temporelle et fréquentielle des systèmes linéaires stationnaires et les outils associés (LTI Viewer, etc.).
On aborde enfin les moyens mis à disposition de l’utilisateur pour effectuer la synthèse des systèmes bouclés. Dans un premier temps les méthodes traditionnelles en régulation industrielle sont mises en œuvre, à l’aide notamment du SISO Design Tool. Dans un second temps, des méthodes de synthèse avancées sont utilisées avec application à un exemple multivariable.
Pour terminer cette analyse, le pilotage en temps réel d’un processus à l’aide d’un outil de type dSPACE ® est abordé.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Synthèse des systèmes bouclés
Deux démarches sont présentées dans cette section. La première, intitulée « régulation industrielle », met en pratique les méthodes classiques de l’automatique dans le cadre monovariable (une seule entrée, une seule sortie). La seconde, intitulée « méthodes de synthèse avancées », utilise une représentation d’état multivariable et s’appuie majoritairement sur une étude temporelle.
5.1 Régulation industrielle
On considère ici la boucle classique, présentée en figure 21, dans laquelle le processus à piloter est décrit par sa transmittance entrée/sortie G(s). Sa sortie est supposée soumise à des perturbations additives notées d(t). On désigne par y(t) la sortie mesurée. Le régulateur a pour sortie le signal de commande u(t) et possède deux entrées, d’une part un signal de consigne (ou signal de référence), noté r(t), et d’autre part la mesure y(t).
-
Régulation PID
Le régulateur le plus répandu est le PID. Dans ce cas, la commande u(t) est élaborée à l’aide d’une action proportionnelle Kc et d’une action intégrale agissant sur la grandeur d’écart e(t) ; l’action dérivée réelle est toujours approximée (on remplace sT d par où τ est une constante de temps qui est au moins 5 à 10 fois plus grande que T d) et agit uniquement sur le signal de mesure y(t).
L’action intégrale, agissant toujours sur la grandeur d’écart e(t), force le signal de commande u(t)...
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Synthèse des systèmes bouclés
BIBLIOGRAPHIE
-
(1) - (V.) MINZU, (B.) LANG - Commande des systèmes linéaires continus - Cours avec applications utilisant Matlab® – Ellipses (2001).
-
(2) - (I.) LANDAU - Identification des systèmes - Hermes (1998).
-
(3) - (P.) DE LARMINAT - Automatique appliquée - Hermes (2007).
-
(4) - (W.M.) WONHAM - Linear multivariable control : a geometric approach - Springer-Verlag (1974).
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Société The Mathworks
Société dSPACE
Bonus du livre Automatique appliquée de Ph. de Larminat
http://www.hermes-science.com/larminat/bonus_automatique.zip
HAUT DE PAGECet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive