Présentation

Article

1 - DISPOSITIFS À UN ÉLECTRON

2 - ASPECTS EXPÉRIMENTAUX

3 - ASPECTS MÉTROLOGIQUES

4 - AUTRES DISPOSITIFS À UN ÉLECTRON

5 - APPLICATIONS DES DISPOSITIFS MONOÉLECTRONIQUES

| Réf : R910 v1

Applications des dispositifs monoélectroniques
Dispositif à un électron et métrologie de l’ampère

Auteur(s) : Nicolas FELTIN, Laurent DEVOILLE

Date de publication : 10 juin 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La physique fondamentale s'est introduite dans le monde de la métrologie. Ainsi, des physiciens ont imaginé à l'échelle nanométrique des dispositifs au travers desquels le passage des électrons serait maîtrisé un à un. Ce nouveau concept a été baptisé "électronique à un électron". L'idée est d'exploiter ce système dans le but de développer un étalon quantique de courant, qui remplacerait très avantageusement l'électrodynamomètre et la détermination gyromagnétique du proton et même la balance du watt.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Fundamental physics has been introduced into the realm of metrology. Physicians have imagined devices through which the passage of the electrons would be controlled individually at the nanoscale. This new concept was called "single-electron electronics". The idea is to exploit this system in order to develop a quantum standard of current which would efficiently replace the electrodynamometer, the determination of the proton gyromagnetic ratio and even the watt balance.

Auteur(s)

INTRODUCTION

L’ampère est défini comme « l’intensité d’un courant électrique constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de un mètre l’un de l’autre dans le vide, produirait entre ces conducteurs une force de 2 × 10 –7 newtons par mètre de longueur ». Jusqu’à aujourd’hui, la réalisation directe de l’ampère s’effectue grâce à un électrodynamomètre avec une incertitude de 10 –5. La détermination du rapport gyromagnétique du proton permet de le réaliser de manière indirecte avec une incertitude de 10 –6. La balance du watt combinée à la détermination de l’ohm devrait à terme conduire à une réalisation de l’ampère à quelque 10 –8 [1]. Cependant, de manière pratique dans le système international d’unités (SI), la réalisation et la reproduction de l’ampère, ainsi que la détermination de ses multiples et sous-multiples passent par les étalons de résistance et de force électromotrice en appliquant la loi d’Ohm. Toute intensité de courant comprise entre 100 pA et 10 kA est ainsi raccordée à l’ohm et au volt par des mesures de la tension aux bornes d’une résistance. Une incertitude de 10 – 6 est obtenue pour des intensités de courant comprises entre 10 µA et 10 mA. Pour les valeurs inférieures à 100 pA, une variation de tension aux bornes d’un condensateur de capacité connue, chargé par le très faible courant à déterminer, est mesurée sur une certaine durée.

Avec l’avènement de la métrologie quantique, les nouveaux dispositifs utilisés comme étalons électriques se sont avérés plus stables, plus reproductibles que les étalons conventionnels et ont permis de gagner 3 à 4 ordres de grandeur sur l’incertitude par rapport aux étalons matériels classiques (piles, résistances). Par ailleurs, les phénomènes mis en jeu reliés directement à des constantes fondamentales (h, e, etc.) pourraient à terme remplacer les unités du SI. La physique fondamentale s’est ainsi introduite dans le monde de la métrologie. Actuellement, les effets Hall quantique et Josephson permettent de conserver l’ohm et le volt. Ces phénomènes se manifestent au sein de dispositifs extrêmement petits (dont une des dimensions caractéristiques est inférieure à 10 nm) et font appel à une physique en plein essor : la physique mésoscopique, ou nanosciences. À l’échelle nanométrique, les matériaux et les systèmes peuvent révéler des caractéristiques complètement nouvelles qui en modifient sensiblement les propriétés. Dans ce contexte, des physiciens ont imaginé des dispositifs au travers desquels le passage des électrons serait maîtrisé un à un [2] [3] [4]. Ce nouveau concept a été baptisé « électronique à un électron » et les métrologues ont immédiatement exploité ces systèmes dans le but de développer un étalon quantique de courant [2].

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r910


Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Applications des dispositifs monoélectroniques

5.1 Métrologie et instrumentation : étalon quantique de courant

Jusqu’à aujourd’hui, la conservation de l’ampère est réalisée par l’intermédiaire des étalons fondamentaux de résistance et de force électromotrice. Cependant, le développement de l’expérience du triangle métrologique décrite plus bas nécessite la mise au point d’un étalon de courant. Les dispositifs SET sont particulièrement bien adaptés pour l’élaboration de cette source de courant étalon et le dispositif retenu pour refermer le triangle métrologique sera celui qui génèrera l’intensité de courant la plus grande, la plus reproductible, avec la plus petite incertitude. De plus, en dehors de l’intérêt que peut susciter l’expérience du triangle métrologique 5.2, un dispositif SET générateur de courant peut avoir une véritable utilité pour l’étalonnage des picoampèremètres de type commercial (Keithley) ou de type intégrateur (PTB ou LNE, figure 21). Dans un tel montage de raccordement, le temps de montée de l’intensité du courant est mesuré pour une variation de tension donnée ou inversement une variation de tension est mesurée au bout d’un temps connu. Ainsi, les faibles courants générés par un dispositif monoélectronique pourront servir à l’étalonnage des résistances de haute valeur indirectement grâce aux intégrateurs. L’industrie de l’électronique peut être intéressée par ce genre de dispositif pour la caractérisation de composants.

HAUT DE PAGE

5.2 Triangle métrologique

Avant 1990, les unités de force électromotrice et de résistance du système international d’unités (SI) étaient maintenues dans les laboratoires nationaux par l’intermédiaire d’étalons matériels qui étaient comparés aux réalisations de l’ohm et du volt. Ces expériences de réalisations des unités étaient par conséquent strictement conformes aux unités SI mais leur mise en œuvre présentait...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Applications des dispositifs monoélectroniques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GENEVÈS (G.) et coll -   The BNM watt balance project.  -  IEEE Transactions on Instrumentation and Measurement, 54, no 2, 850 (2005).

  • (2) - DEVORET (M.H.), ESTEVE (D.), LAFARGE (P.), POTIER (H.), ORFILA (P.F.), URBINA (C.) -   L’électronique à un électron : état de l’art et perspectives.  -  Bulletin du BNM, 86, 7-25 (1991).

  • (3) -   Single charge tunneling Coulomb blockade phenomena in nanostructures.  -  Édité par GRABERT H., NATO ASI series, series B : Physics, 294, Plenum Press (1991).

  • (4) - AVERIN (D.V.), LIHKAREV (K.K.) -   Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions.  -  Journal of Low Temperature Physics, 62, 345-373 (1986).

  • (5) - FELTIN (N.), DEVOILLE (L.), STECK (B.), PIQUEMAL (F.), ULYSSE (C.), JIN (Y.) -   Un nouvel outil pour la métrologie électrique : le dispositif à un électron.  -  Revue Française de métrologie, 2005-2, no 2, 11-34 (2005).

  • ...

1 Organismes

HAUT DE PAGE

1.1 Instituts nationaux de métrologie cités

Laboratoire national de métrologie et d’essais (LNE), France http://www.lne.fr

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australie http://www.csiro.au

Métrologie et accréditation suisse (METAS), Berne, Suisse http://www.metas.ch

National Institute of Standards and Technology (NIST), Boulder CO et Gaithersburg WA, États-Unis http://www.nist.gov

National Physical Laboratory (NPL), Teddington, Royaume-Uni http://www.npl.co.uk

Physikalisch-Technische Bundesanstalt (PTB), Berlin et Braunschweig, Allemagne http:/www.ptb.de

HAUT DE PAGE

1.2 Autres laboratoires cités

Laboratoire de photonique et de nanostructures (CNRS/LPN), Marcoussis, France http://www.lpn.cnrs.fr

Groupe quantronique du CEA-Saclay, Saclay, France http://www-drecam.cea.fr/drecam/spec/Pres/Quantro/

Watson Research Center d’IBM, Cambridge MA, États-Unis http://www.research.ibm.com

Laboratoire de recherche de Philips, Eindhoven, Pays-Bas http://www.research.philips.com

Université...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS