Présentation

Article

1 - PRINCIPE DE LA CHIMIE SUR PHASE SOLIDE

  • 1.1 - Avantages
  • 1.2 - Sécurité et environnement
  • 1.3 - Inconvénients et limites de la méthode
  • 1.4 - Évolution

2 - SUPPORTS

3 - CARACTÉRISTIQUES DES SUPPORTS DE TYPE GEL

4 - FONCTIONNALISATION DU SUPPORT SOLIDE

5 - MÉTHODES D'ANALYSES ET SUIVIS RÉACTIONNELS

6 - SYNTHÈSES SUR PHASE SOLIDE

7 - APPLICATIONS ET PROCÉDÉS INNOVANTS

8 - APPLICATIONS ET PERSPECTIVES INDUSTRIELLES

9 - CONCLUSIONS ET PROSPECTIVES

| Réf : K1260 v1

Supports
Chimie supportée sur phase solide

Auteur(s) : Max Malacria, Jean-Philippe Goddard, Cyril Ollivier, Géraldine GOUHIER

Date de publication : 10 nov. 2008

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

NOTE DE L'ÉDITEUR

Cet article est la version actualisée de l’article K1260 intitulé « Chimie supportée sur phase solide» rédigé par Max MALACRIA Jean-Philippe GODDARD, Cyril OLLIVIER et Géraldine GOUHIER, paru en 2008.

10/09/2018

RÉSUMÉ

La chimie supportée permet d’effectuer une réaction chimique au cours de laquelle le substrat, le réactif ou le catalyseur est greffé sur un polymère solide insoluble. L’utilisation de solvants est limitée car les étapes de purification se résument à de simples filtrations solide/liquide. Le polymère étant recyclable, cette technique a donc toute sa place dans le concept de la chimie verte. Cet article décrit les avantages et inconvénients de la chimie sur phase solide, il aidera le lecteur à choisir le support, sélectionner la méthode et identifier les analyses possibles pour un meilleur suivi réactionnel en fonction de ses objectifs de synthèse à travers de nombreux exemples sélectionnés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Max Malacria

  • Jean-Philippe Goddard

  • Cyril Ollivier : UPMC, université de Paris VI, Laboratoire de Chimie organique (UMR CNRS 7611), Institut de chimie moléculaire (FR 2769).

  • Géraldine GOUHIER : Professeur à l'université de Rouen - IRCOF, UMR 6014, EFAOC université de Rouen

INTRODUCTION

Depuis le travail pionnier de Merrifield en synthèse peptidique sur phase solide, qui lui a valu le Prix Nobel en 1963, la synthèse organique supportée a connu une popularité et un développement constants. La phase solide a tout d'abord été appliquée à la synthèse oligomérique de produits naturels tels que les polypeptides, polysaccharides et oligonucléotides. Ce sont les travaux de Fréchet et Leznoff, à la fin des années 1970, qui ont initié son utilisation à la synthèse de petites molécules en effectuant des réactions organiques dans lesquelles un substrat, un réactif ou un catalyseur étaient greffés sur un polymère solide insoluble. Une autre application est la purification de mélanges réactionnels par des agents piégeants attachés sur supports solides : les « scavengers ». Un nombre important et une grande diversité de réactions organiques ont été transposés, avec succès, à la phase solide et ont été à l'origine, dans les années 1990, du développement de la synthèse combinatoire puis de la synthèse parallèle.

La chimie sur phase solide limite l'utilisation de solvants toxiques, inflammables, réduisant ainsi leurs productions et leurs éliminations, puisqu'elle résume les étapes de purification à de simples filtrations solide/liquide. Le polymère est recyclable, ce qui réduit les déchets. Les synthèses chimiques sont moins dangereuses et moins nocives, du fait de la grande stabilité chimique et physique des supports. Les activations micro-ondes, ultrasons, haute pression et l'influence positive de solvant verts tels que les liquides ioniques ont été démontrées. Enfin, la toxicité ou la volatilité des composés greffés sont minimales, ce qui permet de prévenir les accidents, les maladies, les explosions et les incendies. Pour toutes ces raisons, la chimie sur phase solide a toute sa place dans le concept de la chimie verte.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-k1260


Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Supports

2.1 Squelettes linéaires

Les polymères à squelette linéaire sont solubles dans certains solvants organiques, permettant ainsi d'effectuer les réactions en milieu homogène, sans problème de diffusion, avec une égale accessibilité de tous les sites réactionnels supportés et une cinétique classique. De plus, les substrats immobilisés peuvent être caractérisés par les techniques d'analyses standards. Enfin, la précipitation par ajout d'un non-solvant du polymère rend sa filtration possible. Cependant, elle n'est pas toujours totale et sélective, engendrant parfois des problèmes de séparation et de purification.

Les polymères linéaires les plus utilisés en synthèse organique sont le polyéthylèneglycol (PEG) 1, le polyéthylèneglycolmonométhyléther (MPEG) 2 et le polystyrène linéaire ( ) 3 :

La masse moléculaire des PEG étant en général de 20 000, le nombre de sites de greffage est très faible (de l'ordre de 0,1 milliéquivalent par gramme). Les PEG précipitent dans le diéthyléther ou le tert-butylméthyléther, mais ces solvants étant peu polaires, les impuretés trop polaires précipitent parfois avec le polymère. L'utilisation de l'alcool isopropylique permet de pallier cet inconvénient. Par contre, à cause de leur insolubilité à basse température dans le THF et de leur potentiel chélatant pour les cations métalliques, les PEG sont évincés de la chimie organométallique. Dans ce cas, ce sont les qui sont choisis. De plus, ces derniers peuvent être fonctionnalisés à un taux supérieur aux PEG (jusqu'à 6 ou 7 méq./g). Cependant, une fonctionnalisation trop importante peut engendrer des réactions secondaires intrapolymériques entraînant une réticulation indésirable et irréversible qui modifie la structure et donc la réactivité de la résine (§ ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Supports
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - NUN (P.), COLACINO (E.), MARTINEZ (J.), LAMATY (F.) -   Chimie sans solvant.  -  Chimie sans solvant[K 1 220] Base documentaire « Constantes physico-chimiques » (2008).

  • (2) - PLAQUEVENT (J.-C.), GENISSON (Y.), GUILLEN (F.) -   Réactions de synthèse organique en liquides ioniques.  -  Réactions de synthèse organique en liquides ioniques[K 1 230], Base documentaire « Constantes physico-chimiques » (2008).

  • (3) - MOUTIERS (G.), BILLARD (I.) -   Les liquides ioniques des solvants pour l'industrie.  -  [AF 6 712], Base documentaire « Physique-chimie » (2005).

  • (4) - FERROUD (C.), GUY (A.) -   Liquides ioniques à température ambiante.  -  [K 313], Base documentaire « Constantes physico-chimiques » (2007).

  • (5) - BAUDELLE (R.) -   Chimie combinatoire.  -  [P 3 270], Base documentaire « Techniques d'analyse » (2000).

  • ...

1 Sources bibliographiques

###

Références

HEITZ (W.) - MICHELS (R.) - Polymeric wittig reagents. - Angew. Chem. Int. Ed. Engl., 11, p. 298-299 (1972).

GRUBBS (R.H.) - KROLL (L.C.) - Catalytic reduction of olefins with a polymer-supported rhodium(I) catalyst. - J. Am. Chem. Soc., 73, p. 3062-3063 (1971).

LI (W.) - YAN (B.) - A direct comparison of the mixing efficiency in solid-phase organic synthesis by single bead IR and fluorescence spectroscopy. - Tetrahedron Lett., 38, p. 6485-6488 (1997).

CROWLEY (J.I.) - RAPOPORT (H.) - Solid-phase organic synthesis : novelty or fundamental concept ? - Acc. Chem. Res., 9, p. 135-144 (1976).

SCOTT (L.T.) - REBEK (J.) - OVSYANKO (L.) - SIMS (C.L.) - Organic chemistry on the solid phase. Site-site interactions on functionalized polystyrene. - J. Am. Chem. Soc., 99, p. 625-626 (1977).

SANTINI (R.) - GRIFFITH (M.C.) - QI (M.) - A measure of solvent effects on swelling of resins for solid phase organic synthesis. - Tetrahedron Lett., 39, p. 8951-8954 (1998).

YAN (B.) - KUMARAVEL (G.) - ANJARIA (H.) - WU (A.) - PETTER (R.C.) - JEWELL (C.F.) - WAREING (J.R.) - Infrared spectrum of a single resin-bead for real-time monitoring of solid-phase reactions. - J. Org. Chem., 60, p. 5736-5738 (1995).

TROY (A.) - TRAN (C.D.) - Near-infrared spectrometric determination of di and tripeptides synthesized by a combinatorial solid-phase method. - Anal. Chem., 73, p. 1062-1067 (2001).

VIDAL-FERRAN (A.) - BAMPOS (N.) - MOYANO (A.) - PERICAS (M.A.) - RIERA (A.) - SANDERS (J.K.M.) - High catalytic activity of chiral amino alcohol ligands anchored to polystyrene resins. - J. Org. Chem., 63, p. 6309-6318 (1998).

JOHNSON (R.J.) - ZHANG (B.) - Solid phase synthesis of alkenes using the Horner-Wadsworth-Emmons. Reaction and monitoring by gel phase 31P NMR. - Tetrahedron Lett., 51, p. 9253-9256 (1995).

HOURDIN...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS