Article | REF: K734 V1

Electrocaloric Materials

Author: Gaël SEBALD

Publication date: May 10, 2016, Review date: April 26, 2021

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Français

ABSTRACT

The electrocaloric effect (dependence of the entropy of a dielectric material on the electric field) can be used to produce compact, high efficiency heat engines (for cooling). This article gives a short presentation of the theoretical elements necessary to quantify the electrocaloric effect, an introduction to the experimental characterization techniques, and a detailed description of the properties of many materials: ceramics, single crystals, thick films, thin films, and polymers.

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHOR

  • Gaël SEBALD: University Professor - Electrical Engineering and Ferroelectricity Laboratory (EA682) - INSA-Lyon, Lyon, France Engineering & Science Lyon Tohoku joint laboratory: Materials and systems under extreme conditions (IRL3757) - CNRS - Université de Lyon - Tohoku University International Joint Unit, Tohoku University, Sendai

 INTRODUCTION

Electrocaloric materials convert electrical energy into thermal energy. They have the ability to change their entropy reversibly under the action of an electric field: the polarization induced by the electric field is responsible, in most cases, for a higher order within the material, associated with a decrease in entropy. Types of material include single crystals and ceramics (in bulk, thick-film or thin-film form), as well as polymers. In the absence of heat exchange (the adiabatic case), the temperature of the material can be varied by several degrees, or even tens of degrees, by the application of strong electric fields.

Research into electrocaloric materials developed strongly in the early 2000s, after a few achievements in the 1970s. As the effect measured at the time was too weak to be practically exploitable, it was the development of thin-film and polymer structures that enabled us to achieve high dielectric strength and significant electrocaloric effects.

For some materials, the entropy change is sufficient to move thermal energy from a cold source to a hot one. The electrocaloric material forms the core of a solid-state cooling device, a true thermal machine that can compete with other refrigeration devices (gas compression/expansion systems, evaporation, thermoelectric effect, magnetocaloric effect, etc.). The advantage of such devices is the absence of refrigerant, enabling better integration and a more compact layout. Compared with thermoelectric materials, whose efficiency in practice can hardly exceed 10%, electrocaloric materials theoretically offer reversible operation, leading to energy efficiency close to the ideal Carnot cycle.

At this stage, few experimental electrocaloric demonstrators have been presented, as research has so far focused on the material itself. However, the regenerative cycles developed for the application of the magnetocaloric effect can be transposed to the electrocaloric case.

This article presents a review of the electrocaloric properties of a number of existing materials, after defining a few theoretical elements for understanding the quantification of these effects, and experimental characterization techniques.

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

KEYWORDS

entropy   |   cooling system   |   multiphysics coupling materials   |   heat engine   |   refrigeration   |   electrocaloric effect


This article is included in

Characterization and properties of matter

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Electrocaloric materials