Article | REF: H5020 V1

Multi-Agent Systems

Authors: Frédéric AMBLARD, Amal El FALLAH-SEGHROUCHNI, Benoit GAUDOU, Chihab HANACHI

Publication date: December 10, 2021

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Français

6. Learning in multi-agent universes

It's not always possible to define completely and precisely, at the design stage, the environment in which an agent will evolve, nor the coordination rules of an ADM. It is also difficult to optimize agent behavior a priori, given the open, evolving and unpredictable nature of the environment and the complexity of the situations they may encounter. Machine learning enables an agent to gradually discover and adapt to its environment, to become more efficient or to learn how to coordinate with its associates to carry out a complex task. The example of a team of soccer robots is a case where learning enables a team to establish strategies, each teammate to learn to play a role (goalkeeper, defender, attacker, midfielder) in the service of the common goal (winning a match) and to adapt collective behavior to the opposing team, whose behavior and organization are not known a priori.

...
You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

This article is included in

Software technologies and System architectures

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Learning in multi-agent universes